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elektrotehnike, strojarstva i brodogradnje

Mentor: prof. dr. sc. Sven Gotovac
Rad br. yyy

PODACI ZA BIBLIOGRAFSKU KARTICU
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MODEL DUBOKOG UČENJA ZA PRAĆENJE PLOVILA S FOKUSOM
NA RJEŠAVANJE PROBLEMA DUGOTRAJNIH OKLUZIJA

Sažetak:

Automatska detekcija i praćenje plovila predstavljaju jedno od važnih istraži-

vačkih područja u razvoju suvremenih sustava za sigurnost i upravljanje po-

morskim prometom. Ograničenja postojećih rješenja, zajedno s izraženim utje-

cajem ljudskog faktora, ukazuju na potrebu za razvojem pouzdanijih i visoko

autonomnih pristupa. U tom se kontekstu metode računalnog vida i dubokog

učenja, osobito konvolucijske neuronske mreže, nameću kao obećavajuće rje-

šenje za analizu RGB videozapisa. Ipak, praćenje plovila ostaje složen za-

datak zbog dinamičnih uvjeta morskog okruženja, velikih varijacija u izgledu

plovila te čestih i dugotrajnih okluzija, tijekom kojih detekcije izostaju, a odr-

žavanje kontinuiteta putanja i identiteta plovila postaje znatno otežano. Do-

datni izazov predstavlja nedostatak javno dostupnih i standardiziranih skupova

podataka za praćenje plovila. Stoga je u sklopu disertacije kreiran Split Ship

MOT (SSMOT) skup podataka, koji obuhvaća komplementarne podskupove za

detekciju, reidentifikaciju i praćenje plovila, uključujući realistične scenarije

mimoilaženja i dugotrajnih okluzija. Na temelju SSMOT-a trenirani su i evalu-

irani modeli detekcije i reidentifikacije, te je evaluiran predloženi VOc-SORT

algoritam praćenja s dvostupanjskom asocijacijom koja integrira geometrijske,

vizualne i dinamičke informacije radi smanjenja zamjena identiteta i fragmenta-

cije putanja. Dobiveni eksperimentalni rezultati ukazuju na poboljšane perfor-

manse praćenja u pogledu stabilnosti praćenja i očuvanja identiteta u odnosu na

postojeće pristupe, osobito u scenarijima dugotrajnih okluzija, uz zadržavanje

mogućnosti rada u stvarnom vremenu. Time se ukazuje na potencijal predlože-

nog pristupa za daljnji razvoj autonomnih sustava pomorskog nadzora, kao i za

moguća proširenja prema višesenzorskim i robusnijim rješenjima u otežanim

uvjetima vidljivosti.
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DEEP LEARNING MODEL FOR VESSEL TRACKING ADDRESSING
LONG-TERM OCCLUSION CHALLENGES

Abstract:

Automatic vessel detection and tracking represent one of the important research

areas in the development of modern systems for maritime safety and traffic ma-

nagement. The limitations of existing solutions, together with the substantial

role of the human factor, indicate the need for the development of more reliable

and highly autonomous approaches. In this context, computer vision and deep

learning methods, particularly convolutional neural networks, have emerged as

promising solutions for the analysis of RGB video data. Nevertheless, vessel

tracking remains a complex task due to the dynamic nature of the maritime

environment, large variations in vessel appearance, and frequent and long-term

occlusions, during which detections are missing and maintaining trajectory con-

tinuity and vessel identity becomes significantly more difficult. An additional

challenge is the lack of publicly available and standardized datasets for vessel

tracking. To address this issue, the Split Ship MOT (SSMOT) dataset was cre-

ated as part of this dissertation, comprising complementary subsets for vessel

detection, re-identification, and tracking, including realistic scenarios of vessel

encounters and long-term occlusions. Based on the SSMOT dataset, detection

and re-identification models were trained and evaluated, and the proposed VOc-

SORT tracking algorithm with a two-stage association strategy was evaluated,

integrating geometric, visual, and dynamic information to reduce identity swit-

ches and trajectory fragmentation. The experimental results indicate improved

tracking performance in terms of stability and identity continuity compared to

existing approaches, particularly in scenarios with long-term occlusions, while

maintaining real-time capability. These findings suggest the potential of the

proposed approach for further development of autonomous maritime surveil-

lance systems, as well as for extensions toward multi-sensor and more robust

solutions under challenging visibility conditions.
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5.2.1. Tehničke specifikacije računalnog okruženja . . . . . . . . . . . . 83
5.2.2. Odabrani modeli i vrijednosti hiperparametara . . . . . . . . . . . 83
5.2.3. Proces treniranja . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3. Evaluacija modela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1. Korištene metrike . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2. Rezultati evaluacije . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6. REIDENTIFIKACIJSKI MODEL 93
6.1. Korišteni modeli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1. ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.2. OSNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2. Implementacija i treniranje ReID modela . . . . . . . . . . . . . . . . . . . 96
6.2.1. Konstrukcija mini-serija . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2. Optimizator i funkcija gubitka . . . . . . . . . . . . . . . . . . . . 97

6.3. Evaluacija ReID modela . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.1. Korištene metrike . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2. Rezultati evaluacije . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi
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LITERATURA 141

A. Struktura SSMOT detekcijskog podskupa prije i nakon proširenja 165

B. Detalji o SSMOT videozapisima za praćenje 169
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5.1. Hiperparametri korišteni prilikom treniranja YOLO11n/s/m modela. . . . . 85

5.2. Usporedba arhitekturnih karakteristika i evaluacijskih rezultata odabranih
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skupu za detekciju: modeli trenirani na proširenoj naspram modela trenira-
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ženog VOc-SORT algoritma i postojećih metoda. . . . . . . . . . . . . . . 118

7.5. Primjer ponašanja odabranih algoritama praćenja (VOc-SORT, StrongSORT,
OC-SORT i BoT-SORT) na dijelu SSMOT_9 videozapisa s med̄usobnim prek-
lapanjem plovila i primjerom duge okluzije putničkog broda trajektom. . . . 119
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OC-SORT i BoT-SORT) na sceni iz SSMOT_9 videozapisa, u kojoj isto plo-
vilo najprije ulazi u kratku okluziju u trajanju od 0.40 s (iza bijele jedrilice),
a zatim u srednje dugu okluziju u trajanju od 6.91 s (iza katamarana). . . . 120

7.7. Prikaz vizualno zahtjevne scene iz videozapisa SSMOT_6 obilježene prekla-
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okluzija pri korištenju različitih modela za ekstrakciju vizualnih značajki. . 128
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teta plovila na dva testna primjera. Crvenim okvirom istaknute su pogreške
reidentifikacije. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.14. Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
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nih na početnom i proširenom SSMOT detekcijskom skupu podataka. . . . . 177
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1. UVOD

Automatska detekcija i praćenje plovila važni su elementi sigurnosti i učinkovitosti global-
nog pomorskog prometa. S obzirom na kontinuiran rast pomorskih aktivnosti, raste i potreba
za naprednim tehnologijama koje omogućuju pravovremeno prepoznavanje i praćenje plovila
radi smanjenja rizika od nesreća, učinkovitijeg upravljanja pomorskim prometom, suzbijanja
ilegalnih aktivnosti te zaštite teritorijalnih voda i morskog okoliša [1, 2].

Sustavi za upravljanje pomorskim prometom uvelike se oslanjaju na tehnologije poput
radara i automatskog identifikacijskog sustava za detekciju, identifikaciju i praćenje plovila
[3, 4]. Radar (RAdio Detecting And Ranging) radi na principu odašiljanja radio valova i
analize njihovih refleksija, što omogućuje precizno odred̄ivanje udaljenosti, smjera i brzine
objekata unutar njegovog dometa [5, 6]. Automatski identifikacijski sustav (AIS) je auto-
nomni brodski primopredajnik koji koristi VHF (engl. Very High Frequency) radio kanale za
kontinuiranu razmjenu podataka izmed̄u plovila i lučkih vlasti [7]. AIS se povezuje sa sen-
zorima za navigaciju te prenosi: 1) dinamičke podatke poput pozicije broda, kursa, brzine
i navigacijskog statusa broda, 2) statičke podatke koji su uneseni prilikom ugradnje ured̄aja
poput imena broda, pozivnog znaka, dužine preko svega, širine i IMO (engl. International

Maritime Organisation) broja, 3) podatke o plovidbi kao što su gaz broda, vrsta tereta, luka
odredišta i vrijeme dolaska, 4) poruke vezane za sigurnost [8, 7].

Unatoč širokoj primjeni, sustavi temeljeni na radarima i AIS-u imaju odred̄ena ograni-
čenja. Pouzdanost radara može biti smanjena zbog vremenskih uvjeta poput magle, kiše i
visokih valova, kao i zbog interferencija uzrokovanih prisutnošću drugih radarskih sustava
[9, 10]. Njegov domet osobito je ograničen u priobalnim područjima i lukama s brojnim
preprekama te u prometnim pomorskim zonama [3]. Nadalje, radari nisu u mogućnosti de-
tektirati manje objekte s lošim reflektirajućim svojstvima [11]. S druge strane, sva plovila ne
moraju nužno imati ugrad̄en AIS, primjerice brodovi za sport i razonodu te ribarski i ratni
brodovi. Takod̄er, AIS pojedinih plovila može biti neispravan ili isključen [7]. Pored toga,
AIS podaci ranjivi su na manipulacije i namjerno lažiranje [12].

Ljudska pogreška odgovorna je za otprilike 70% pomorskih nesreća [8]. Trenutna rje-
šenja koja se oslanjaju na AIS i radarske sustave prilagod̄ena su poluautomatskoj navigaciji
plovila te i dalje zahtijevaju značajnu ljudsku intervenciju [13]. Velika potreba za ručnim
nadzorom i analizom povećava rizik od ljudske pogreške, kašnjenja u reakciji i nedosljed-
nosti u interpretaciji podataka. Kako bi se postigla veća razina autonomije i smanjila ovisnost
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Poglavlje 1. UVOD

o ljudskom faktoru, sve se više istražuju napredne metode percepcije temeljene na računal-
nom vidu. U tom kontekstu, duboko učenje igra ključnu ulogu. Za razliku od tradicionalnih
metoda strojnog učenja koje zahtijevaju ručno dizajnirane značajke, tehnike dubokog uče-
nja automatski izdvajaju značajke iz sirovih podataka [14]. Konvolucijske neuronske mreže
(engl. Convolutional Neural Networks, CNNs) [15] jedan su od ključnih pokretača uspjeha
metoda dubokog učenja u obradi vizualnih podataka poput slika i videozapisa. Arhitektura
konvolucijskih neuronskih mreža inspirirana je receptivnim poljima neurona u vizualnom
korteksu životinja [16, 17], a dizajnirana je tako da se značajke uče hijerarhijski, komponi-
rajući jednostavnije značajke u one složenije.

Prema vrsti podataka koji se koriste, algoritmi za automatsku detekciju i praćenje plo-
vila se svrstavaju u tri kategorije: algoritme koji koriste slike (videozapise) snimljene stan-
dardnim kamerama, one koji se oslanjaju na podatke radara sa sintetičkom aperturom (engl.
Synthetic Aperture Radar, SAR), te algoritme koji koriste satelitske snimke daljinskih istra-
živanja [18, 19]. Zbog velike veličine i duljeg vremena prikupljanja, što rezultira relativno
dugim vremenom obrade, SAR i satelitski snimci nisu optimalan izbor za primjene koje
zahtijevaju obradu u stvarnom vremenu. Nasuprot tome, široka dostupnost, niski troškovi i
dovoljna razina vizualne informativnosti čine standardne RGB kamere obećavajućim rješe-
njem za ove vrste aplikacija [19, 4, 13]. Integracijom RGB kamera s algoritmima dubokog
učenja otvara se put ka razvoju potpuno autonomnih sustava za praćenje u pomorstvu. Ova
doktorska disertacija fokusirana je na implementaciju algoritama za praćenje plovila u RGB
videozapisima, pri čemu se koriste metode dubokog učenja za pouzdanu detekciju plovila te
ekstrakciju relevantnih vizualnih značajki koje doprinose učinkovitijem praćenju u dinamič-
nim i promjenjivim pomorskim uvjetima.

Iako automatska detekcija i praćenje plovila imaju brojne praktične primjene, ovo je
područje istraživanja znatno manje zastupljeno u literaturi u usporedbi s istraživanjima us-
mjerenima na praćenje pješaka, automobila i sličnih objekata [4, 20]. Praćenje plovila na vi-
deozapisima složen je zadatak obilježen brojnim izazovima koji proizlaze iz složenih uvjeta
morskog okruženja, tehničkih ograničenja i velike varijabilnosti izgleda plovila. Ono zah-
tijeva robustan sustav koji je otporan na promjenjive vremenske uvjete i uvjete na moru.
Loša vidljivost uzrokovana maglom, kišom, sumrakom ili noćnim uvjetima može značajno
smanjiti kvalitetu videozapisa. Odsjaji i refleksije sunčeve svjetlosti na vodi, kao i veliki
valovi te drugi plutajući objekti, dodatno otežavaju detekciju plovila. Nadalje, u zadacima
praćenja koji uključuju objekte poput pješaka ili automobila, varijacije u veličini, izgledu i
kategorijama objekata znatno su manje u usporedbi s varijacijama prisutnima kod plovila [4].
Dodatan izazov predstavlja potreba za izvršavanjem složenih algoritama praćenja u stvarnom
vremenu uz ograničene hardverske resurse [21]. Uz navedene specifične izazove, algoritmi
praćenja plovila suočavaju se i s općim izazovima detekcije malih objekata poput plovila na
velikim udaljenostima od kamere, okluzije i reidentifikacije izgubljenih objekata.
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Jedan od najvećih izazova u praćenju objekata je problem okluzije, odnosno djelomične
ili potpune zaklonjenosti objekta nekim drugim objektom ili pozadinom. Već djelomična
zaklonjenost objekta otežava ekstrakciju kvalitetnih vizualnih značajki za njegovu reidentifi-
kaciju [22], dok za vrijeme potpune zaklonjenosti objekta vizualna informacija u potpunosti
nedostaje. S obzirom na duljinu razdoblja zaklonjenosti, okluzije se obično dijele na krat-
kotrajne i dugotrajne, pri čemu ne postoji jasno i jednoznačno definirana granica izmed̄u
tih dviju kategorija [23, 24, 25]. U slučaju praćenja plovila, dugotrajne okluzije se češće
javljaju nego što je to slučaj kod uobičajenog praćenja pješaka, primjerice u situacijama zak-
lonjenosti manjeg plovila nekim većim plovilom koje se sporije kreće. Kada detekcija u tre-
nutnom okviru videozapisa nedostaje zbog zaklonjenosti, putanju objekta moguće je nado-
puniti graničnim okvirom predvid̄enim algoritmom za predvid̄anje sljedeće pozicije objekta.
U mnogim algoritmima praćenja, za predvid̄anje sljedeće pozicije koristi se Kalmanov fil-
ter [26] koji pretpostavlja linearno kretanje objekata. Navedena pretpostavka je prihvatljiva
za vrijeme kratkotrajnih okluzija. Med̄utim, u slučaju dulje zaklonjenosti objekta, linearna
procjena može postati izrazito nepouzdana zbog akumulacije pogreške uzrokovane izostan-
kom novih mjerenja (detekcija) za ažuriranje parametara Kalmanovog filtera [27]. Iako su
performanse algoritama u situacijama kratkih zaklonjenosti znatno poboljšane, i dalje imaju
ograničenu učinkovitost u slučaju dugotrajnih okluzija, pri čemu se uspješno rješava manje
od 10 % okluzija duljih od tri sekunde [23]. To ukazuje na potrebu za daljnjim istraživanjima
usmjerenima na poboljšanje performansi algoritama praćenja u takvim scenarijima.

Javno dostupni referentni skupovi podataka (engl. benchmark datasets) pružaju standar-
diziranu osnovu za usporedbu različitih modela i tehnika, potičući transparentnost, reproduk-
tibilnost i napredak u istraživanju [28]. Fokus velikog broja referentnih skupova podataka
za praćenje više objekata je na detekciji i praćenju pješaka [29, 30, 31, 32, 33]. Uvrije-
žila se evaluacija novih metoda praćenja upravo na takvim skupovima podataka, pri čemu
se ekstenzivno koriste skupovi iz MOT izazova [30, 31, 32, 33]1. Zbog aktualne popular-
nosti autonomne vožnje, kreirani su i referentni skupovi podataka koji omogućuju razvoj i
evaluaciju algoritama za praćenje pješaka i vozila [34, 35, 36, 37, 38, 39, 40]. Evaluacija
na navedenim skupovima podataka često ne uspijeva adekvatno odraziti ograničenja algo-
ritma za praćenje objekata u slučajevima dugotrajnih okluzija, budući da su takvi scenariji
statistički rijetki [23]. S druge strane, nedostatak javno dostupnog i opće prihvaćenog skupa
podataka za praćenje plovila predstavlja prepreku daljnjem napretku u ovom području istra-
živanja, ograničavajući mogućnost objektivne usporedbe postojećih metoda i razvoja novih.

Prethodna razmatranja ukazuju na ograničenja u području praćenja plovila, posebice u
kontekstu dugotrajnih okluzija i nedostatka odgovarajućih referentnih skupova podataka.
Upravo ta ograničenja odred̄uju istraživački okvir ove disertacije, čiji je cilj adresirati na-
vedene izazove i ponuditi doprinos u njihovom rješavanju.

1https://motchallenge.net/
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1.1. Hipoteza i znanstveni doprinos

Polazeći od identificiranih izazova u području praćenja plovila u ovoj disertaciji formulirana
je sljedeća, glavna, istraživačka hipoteza:

H: Moguće je razviti i implementirati novi algoritam za praćenje plovila koji će imati
poboljšane performanse u odnosu na dosadašnja istraživanja te biti otporniji na
dugotrajne okluzije.

Kako bi se glavna istraživačka hipoteza mogla sustavno i empirijski provjeriti, ona je razlo-
žena na pet pomoćnih hipoteza koje se odnose na identificirane izazove u području praćenja
plovila te na očekivane učinke mogućih poboljšanja.

H1: Postojeće metode praćenja plovila pokazuju smanjenu sposobnost očuvanja identiteta

u uvjetima dugotrajnih okluzija.

H2: Unaprjed̄enje kvalitete detekcija poboljšava opće performanse praćenja, ali ne rješava

u potpunosti problem reidentifikacije plovila nakon okluzija.

H3: Domenska prilagodba modela za reidentifikaciju plovila, provedena na podacima iz

pomorskog okruženja, doprinosi pouzdanijem očuvanju identiteta plovila u algorit-

mima praćenja u odnosu na korištenje modela treniranih isključivo na općim skupo-

vima podataka, osobito u uvjetima dugotrajnih okluzija.

H4: Integracija vizualnih ReID značajki s informacijama o kretanju unutar algoritma pra-

ćenja omogućuje pouzdaniju asocijaciju detekcija i putanja nakon dugotrajnih oklu-

zija nego korištenje isključivo prostornih i kinematičkih informacija.

H5: Unaprjed̄enje postupka asocijacije detekcija i putanja može dovesti do poboljšanog

očuvanja identiteta plovila tijekom dugotrajnih okluzija.

U kontekstu postavljenih hipoteza i definiranih istraživačkih ciljeva, provedeno istraživa-
nje obuhvatilo je analizu postojećih pristupa, razvoj odgovarajuće metodologije te implemen-
taciju i eksperimentalnu evaluaciju novog algoritamskog rješenja. Kao rezultat tog procesa,
ostvarena su sljedeća dva glavna znanstvena doprinosa ove disertacije:

1. Izrada referentne baze označenih slika i videozapisa za detekciju, reidentifikaciju i
praćenje plovila.

2. Razvoj algoritma za praćenje plovila na videozapisima s poboljšanim performan-
sama u slučaju dugotrajnih okluzija.
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1.2. Organizacija rada

U uvodnom poglavlju istaknuti su motivacija i kontekst istraživanja, razmatraju se ograniče-
nja postojećih sustava za nadzor pomorskog prometa te se obrazlaže potreba za primjenom
metoda računalnog vida i dubokog učenja u zadacima automatske detekcije i praćenja plo-
vila. Takod̄er, formulirane su istraživačke hipoteze i definiran je znanstveni doprinos diser-
tacije. Zajedno s uvodnim poglavljem, doktorska disertacija je podijeljena na ukupno osam
poglavlja.

Drugo poglavlje daje teorijsku osnovu problema praćenja više objekata. U poglavlju su
opisani osnovni pojmovi te je predstavljena kategorizacija algoritama za praćenje više obje-
kata. Detaljno su razrad̄eni ključni koraci MOT algoritama, te su opisani neki od popularnih
algoritama praćenja temeljenih na detekciji. Poseban dio poglavlja posvećen je standardnim
evaluacijskim metrikama za praćenje više objekata koje se koriste za objektivnu procjenu
performansi algoritama. Na kraju poglavlja razmotreni su ključni izazovi praćenja, uključu-
jući problem okluzije, zamjene identiteta i praćenje malih objekata.

Sustavan pregled relevantne znanstvene literature prikazan je u trećem poglavlju. U tom
poglavlju razmatraju se dosadašnja istraživanja iz područja automatske detekcije i praćenja
plovila, s posebnim naglaskom na problem okluzije praćenih objekata. Najprije se analizi-
raju postojeći skupovi podataka za detekciju i praćenje plovila, nakon čega slijedi pregled
radova usmjerenih na razvoj i primjenu algoritama za detekciju i praćenje plovila. Poglav-
lje završava kritičkom analizom postojećih pristupa i identifikacijom otvorenih izazova koji
motiviraju daljnje istraživanje.

U četvrtom poglavlju opisan je dizajn i implementacija SSMOT (Split Ship MOT) skupa
podataka. Poglavlje detaljno prikazuje strukturu skupa podataka, koji se sastoji od detek-
cijskog podskupa, podskupa za reidentifikaciju te skupa videozapisa za praćenje plovila.
Analizirane su statističke karakteristike pojedinih podskupova, pri čemu je posebna pažnja
posvećena analizi okluzija u podskupu za praćenje.

Peto poglavlje opisuje odabrani YOLO11 model za detekciju plovila. Poglavlje obu-
hvaća detaljan opis procesa treniranja detektora na SSMOT detekcijskom podskupu, uklju-
čujući korištene hiperparametre te tehničke karakteristike računalnog okruženja. Nadalje,
provedena je evaluacija dobivenog modela primjenom standardnih metrika, te su analizirani
dobiveni rezultati.

U šestom poglavlju opisani su reidentifikacijski modeli korišteni za ekstrakciju vizualnih
značajki (ResNet50 i OSNet), te postupak njihove implementacije i treniranja. Poglavlje
završava evaluacijom dobivenih ReID modela i analizom postignutih rezultata.

Sedmo poglavlje predstavlja središnji doprinos ove disertacije. U njemu se uvodi predlo-
ženi VOc-SORT algoritam praćenja s poboljšanim performansama u slučaju dugotrajnih ok-
luzija. Detaljno je opisan dizajn algoritma, ključne prilagodbe u odnosu na postojeće metode
te pojedini koraci njegova rada. Nadalje, provedena je usporedba performansi s postojećim
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metodama, prikazani su rezultati evaluacije i ablacijske analize, te je dana opsežna rasprava
o utjecaju pojedinih komponenti algoritma, ulozi ReID modela i ograničenjima predloženog
pristupa.

Osmo, završno poglavlje donosi zaključak rada, u kojem se sažimaju glavni rezultati i
ostvareni znanstveni doprinosi disertacije. Takod̄er se razmatraju i ograničenja predloženog
pristupa te se predlažu smjernice za buduća istraživanja.
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2. PROBLEM PRAĆENJA VIŠE OBJEKATA

Zahvaljujući izraženom komercijalnom i akademskom potencijalu, praćenje objekata pos-
talo je jednim od važnijih istraživačkih područja u domeni računalnog vida [41, 42]. Proces
praćenja uključuje detekciju i identifikaciju objekata u svakom okviru (engl. frame) videoza-
pisa, uz očuvanje konzistentnog identifikatora objekta tijekom cijelog snimka. Iako detekcija
objekta iz okvira u okvir videozapisa pruža osnovne informacije o lokaciji i klasi objekta,
sama po sebi ne daje kontinuiranu informaciju o kretanju objekta kroz vrijeme koja je nužna
za mnoge praktične primjene. Kako bi se steklo dublje razumijevanje dinamike kretanja
objekata, nužno je primijeniti algoritme praćenja.

2.1. Kategorizacija algoritama praćenja

S obzirom na broj objekata koji se prati, razlikujemo metode praćenja jednog objekta (engl.
Single Object Tracking, SOT) i metode praćenja više objekata (engl. Multiple Object Trac-

king, MOT). Metode praćenja jednog objekta, usmjerene su na praćenje jednog konkretnog
objekta tijekom cijelog videozapisa. Objekt, definiran u prvom okviru, detektira se i prati
kroz sve naredne okvire [41]. S druge strane, metodama za praćenje više objekata cilj je
locirati sve objekte od interesa te pratiti njihov identitet i putanje kroz dani videozapis. U
odnosu na praćenje jednog objekta, praćenje više objekata uključuje dva dodatna zadatka: 1)
odred̄ivanje broja objekata koji se prate, a koji se mijenja tijekom vremena, 2) održavanje

konzistentnog identiteta objekata tokom cijelog videozapisa [43].
Algoritmi praćenja više objekata mogu se podijeliti prema različitim kriterijima. S obzi-

rom na način obrade videozapisa, MOT algoritmi dalje se dijele na [43]:

• online algoritme, koji prilikom obrade trenutnog okvira koriste isključivo informacije
iz prethodnih okvira,

• offline (batch) algoritme, koji uzimaju u obzir informacije iz prošlih, ali i iz budućih
okvira videozapisa.

Offline metode generalno daju bolje rezultate zbog dostupnosti globalne informacije iz ci-
jelog videozapisa. Ipak, njihova primjena nije moguća u aplikacijama koje zahtijevaju iz-
vršavanje u stvarnom vremenu jer tada budući okviri nisu dostupni [44, 45]. Stoga se one
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uglavnom primjenjuju za analizu snimljenih videozapisa [46]. Za aplikacije koje zahtijevaju
obradu u stvarnom vremenu, koriste se isključivo online algoritmi praćenja.

MOT algoritmi mogu se kategorizirati i prema načinu inicijalizacije objekata koji se
prate. Prema tom kriteriju, razlikuju se algoritmi koji koriste detekcije za inicijalizaciju
i oni koji ne koriste detekcije, već zahtijevaju ručnu inicijalizaciju fiksnog broja objekata
u prvom okviru videozapisa [47, 43]. Algoritmi koji koriste detekcije mogu automatski ot-
kriti nove objekte koji ulaze u scenu te prestati pratiti one koji iz nje izlaze. Med̄utim, njihova
učinkovitost uvelike ovisi o kvaliteti detekcija koje se koriste. S druge strane, algoritmi koji
zahtijevaju ručnu inicijalizaciju ne ovise o detekciji, ali su manje fleksibilni jer zahtijevaju
unaprijed definirani broj objekata i ne mogu se automatski prilagoditi novim objektima koji
se u sceni pojave naknadno. Zbog ovih ograničenja nisu prikladni za složenije scenarije s
promjenjivim brojem objekata.

Prema načinu na koji pristupaju zadatku praćenja objekata, MOT algoritmi najčešće se
dijele u tri osnovne skupine [48]:

• algoritme temeljene na detekciji (engl. Tracking-By-Detection, TBD),

• algoritme zajedničke detekcije i praćenja (engl. Joint-Detection and Tracking, JDT),

• algoritme temeljene na transformerima.

Algoritmi temeljeni na detekciji odvajaju detekciju i praćenje u dvije nezavisne kompo-
nente, što ih čini intuitivnijima i jednostavnijima za implementaciju [49]. Zahvaljujući na-
prednim modelima za detekciju, koji se mogu samostalno optimizirati, algoritmi temeljeni na
detekciji često postižu visoku razinu točnosti [50] zadržavajući računalnu učinkovitost nužnu
za primjene u stvarnom vremenu [51]. Med̄utim, njihova osjetljivost na pogrešne i nedos-
tajuće detekcije može dovesti do značajne degradacije u performansama algoritma praćenja.
S druge strane, algoritmi zajedničke detekcije i praćenja integriraju detekciju i praćenje u
jedinstveni model koji istovremeno obavlja obje zadaće, čime se postiže veća koherentnost
i poboljšane performanse u složenijim scenarijima, poput onih s nedostajućim detekcijama
objekata [52]. Ipak, ovakav pristup ima manju fleksibilnost te zahtijeva složenije modele,
koji su računalno zahtjevniji i sporije konvergiraju tijekom treniranja [53].

U posljednjem desetljeću, transformerske neuronske mreže [54], poznate kao transfor-
meri, privukle su značajnu pažnju i unutar područja računalnog vida, te su pokazale po-
tencijal za primjenu u zadacima praćenja više objekata [49]. Izvorno razvijeni za zadatke
obrade prirodnog jezika, transformeri su pokazali izvanredne rezultate u prepoznavanju da-
lekih ovisnosti i složenih odnosa u sekvencijalnim podacima. Takve karakteristike čine ih
prikladnima i za MOT zadatke, gdje je nužno razumijevanje prostornog i vremenskog kon-
teksta za precizno praćenje više objekata. Primjenom mehanizama pozornosti (engl. at-

tention), transformeri mogu učinkovito procesirati i povezati informacije iz različitih okvira
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videozapisa, čime se adresiraju izazovi poput okluzija i interakcija med̄u objektima u slo-
ženim scenama [55]. Med̄utim, glavni nedostaci transformera su njihova visoka računalna
složenost i nedovoljna prilagod̄enost specifičnostima računalnog vida [56, 49, 57]. Perfor-
manse sustava koji koriste transformere još uvijek zaostaju za najsuvremenijim metodama
temeljenim na detekciji, kako u aspektu točnosti tako i u pogledu vremenske učinkovitosti
[27]. Usporedba karakteristika MOT algoritama temeljenih na transformerima, u odnosu na
TBD i JDT pristupe, prikazana je u Tablici 2.1.

Tablica 2.1: Usporedba karakteristika tri različite kategorije MOT algoritama.

Vrsta Predstavnici Prednosti Nedostaci

TBD

SORT [58]
DeepSORT [59]
ByteTrack [60]
BoT-SORT [61]

StrongSORT [62]
OC-SORT [27]
BoostTrack [63]

modularnost,
fleksibilnost,

jednostavnost,
efikasniji za

online praćenje

značajna ovisnost o
kvaliteti detekcija

JDT

Tracktor++ [64]
CenterTrack [65]

FairMOT [66]
JDE [67]

bolja integracija
informacija,
robusniji na

gubitak detekcija,
višemodularno

zajedničko učenje

manja fleksibilnost,
složenija implementacija,

veći računalni zahtjevi

Transformeri

TransTrack [68]
TrackFormer [69]
TransCenter [57]
TransMOT [70]

značajna
paralelizacija,

bolje performanse
u složenim scenama,

bogata globalna i
kontekstualna
informacija

visoka računska
složenost, potreban

velik broj podataka i
resursa za treniranje,

složena implementacija
i optimizacija, nisu potpuno

prilagod̄eni području
računalnog vida

2.2. Osnovni koraci MOT algoritma

Zahvaljujući značajnom napretku i iznimnim postignućima u području detekcije objekata,
metode koje koriste detekcije postale su standardnim pristupom u praćenju više objekata
[48]. Stoga je u nastavku fokus isključivo na njima. Unatoč velikoj raznolikosti, većina al-
goritama za praćenje više objekata na neki način kombinira sljedeće korake, bilo djelomično
ili u cijelosti [44, 47]:

(a) Detekcija objekata: U danom ulaznom okviru, detektor identificira i lokalizira objekte
od interesa koristeći pravokutne granične okvire.
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(b) Predvid̄anje sljedeće pozicije: Za svaku aktivnu putanju, buduća pozicija objekta pro-
cjenjuje se temeljem analize njegovog trenutnog stanja i prethodnih kretanja.

(c) Ekstrakcija značajki: Vizualne karakteristike i značajke kretanja izdvajaju se iz detek-
cija i putanja objekata primjenom jednog ili više različitih ekstraktora.

(d) Izračun sličnosti: Dobivene značajke i predvid̄ene pozicije objekta koriste se za izračun
sličnosti (udaljenosti) izmed̄u novih detekcija i postojećih putanja.

(e) Asocijacija: Temeljem dobivenih vrijednosti sličnosti (udaljenosti) detekcije se pove-
zuju s putanjama, čime se detekcijama dodjeljuje identifikator odgovarajućeg objekta.

(f) Upravljanje putanjama: Ažuriraju se stanja postojećih putanja, incijaliziraju se nove
putanje i završavaju neaktivne putanje.

Korak (a) i koraci (b) - (f) mogu se promatrati kao dvije nezavisne komponente algori-
tama temeljenih na detekciji: komponenta za detekciju i komponenta za praćenje. Kvaliteta
detekcija koje se koriste za praćenje ima značajan utjecaj na performanse algoritma teme-
ljenog na detekciji. Kako bi se omogućila transparentna usporedba različitih komponenti za
praćenje, neki MOT izazovi pružaju pristup javnim detekcijama [31, 33]. Time se stavlja
fokus na razvoj inovativnih komponenti za praćenje, umjesto na implementaciju moćnih de-
tektora. Slika 2.1 ilustrira uobičajen redoslijed navedenih koraka u algoritmu za praćenje. S
druge strane, u algoritmima zajedničke detekcije i praćenja, odred̄eni koraci (b) - (f) se inte-
griraju s detekcijom iz koraka (a). Najčešće je to integracija detekcije i ekstrakcije značajki
[71, 67, 66] ili detekcije i predvid̄anja sljedeće pozicije objekta [64, 72, 65].

(a)

detekcija 
objekata

ulazni okvir

(b)

predviđanje  

sljedeće 
pozicije

putanje 

ID: 1

ID: 2

ID: 1

ID: 2

ID: 1

ID: 2

putanje 

(f)

upravljanje  
putanjama

(c)

ekstrakcija 

značajki (d)+ (e)

asocijacija

temeljem


izračunatih 

sličnosti

pu
ta

nj
e

d
etekcije

sličnosti

Slika 2.1: Uobičajeni koraci MOT algoritma temeljenog na detekciji.
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Poglavlje 2. PROBLEM PRAĆENJA VIŠE OBJEKATA

2.2.1. Detekcija objekata

Detekcija objekata važan je zadatak računalnog vida koji obuhvaća prepoznavanje, precizno
lociranje i klasifikaciju relevantnih objekata unutar digitalne slike ili videozapisa. Svaka de-
tekcija opisana je trima atributima: klasom kojoj pripada prepoznati objekt, pravokutnim
graničnim okvirom koji odred̄uje njegov položaj unutar slike i razinom pouzdanosti (engl.
confidence score) detektora u dano predvid̄anje.

Suvremeni algoritmi za praćenje u velikoj mjeri se oslanjaju na metode dubokog učenja
u fazi detekcije, napuštajući tako tradicionalne pristupe koji se temelje na ručno definiranim
značajkama. Nasuprot tome, koriste duboke konvolucijske neuronske mreže [15], koje auto-
matski uče složene semantičke reprezentacije iz podataka, čime se postiže veća preciznost i
robusnost detekcija [73].

Detektori zasnovani na dubokom učenju dijele se na dvostupanjske (engl. two-stage)
i jednostupanjske (engl. one-stage) detektore. Dvostupanjski detektori prvo generiraju
prijedloge regija unutar slike koje bi mogle sadržavati objekte, a zatim te regije klasificiraju i
regresijom prilagod̄avaju granične okvire objekata. Nasuprot tome, jednostupanjski detektori
direktno iz ulaza predvid̄aju klase i granične okvire, izostavljajući fazu generiranja prijedloga
regija, što rezultira bržim izvod̄enjem [74]. Pregled najpoznatijih predstavnika ovih dviju
kategorija detektora dan je u Tablici 2.2.

Izbor odgovarajućeg detektora ključan je za učinkovit rad sustava za praćenje objekata.
Različiti detektori primjenjuju se ovisno o zahtjevima točnosti i vremena izvod̄enja. Neko-
liko metoda praćenja temelji se na dvostupanjskom Faster R-CNN detektoru [75, 58, 59, 76],
koji obično postiže veću točnost detekcije u usporedbi s jednostupanjskim pristupima. S
druge strane, neki radovi [77, 78, 79] koriste jednostupanjski SSD detektor, koji omogućava
bržu detekciju uz nešto manju preciznost. Takod̄er, CenterNet detektor sve se češće primje-
njuje [80, 66, 65] zahvaljujući svojoj efikasnosti i jednostavnosti, što ga čini pogodnim za
različite scenarije praćenja. Zahvaljujući optimalnom balansu izmed̄u točnosti i brzine izvr-
šavanja, YOLO detektor se afirmirao kao najpopularniji detektor za praćenje objekata, što
pokazuju brojne recentne studije [81, 62, 60, 61, 82, 83].

2.2.2. Predvid̄anje sljedeće pozicije

Algoritmi za detekciju objekata koji se koriste u okviru praćenja više objekata nisu bez ne-
dostataka. Često se suočavaju s izazovima poput lažno pozitivnih i nepreciznih detekcija,
koje su obično posljedica loših uvjeta okoline poput lošeg osvjetljenja, prisutnosti sjena, dje-
lomične zaklonjenosti objekta ili drugih faktora. Osim toga, moguće je da detektor uopće ne
registrira objekt, osobito u situacijama potpune zaklonjenosti, što može rezultirati prekidom
putanje tog objekta. Kako bi se prevladali navedeni problemi i poboljšali rezultati praćenja,
primjenjuju se različite metode za predvid̄anje budućeg stanja objekta. Te metode omogu-
ćuju nadopunu putanje objekta u slučajevima kada detekcija nedostaje i korekciju putanje u
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Poglavlje 2. PROBLEM PRAĆENJA VIŠE OBJEKATA

Tablica 2.2: Pregled popularnih dvostupanjskih i jednostupanjskih detektora.

Vrsta Predstavnici Godina Kratki opis
Tw

o-
st

ag
e

R-CNN
[84] 2014.

Selektivna pretraga generira prijedloge regija iz ulazne
slike, iz kojih CNN ekstrahira značajke za klasifikaciju
objekata i korekciju predloženih graničnih okvira.

Fast R-CNN
[85] 2015.

CNN prvo izdvaja značajke iz cijele slike, a zatim se-
lektivna pretraga generira prijedloge regija, koje RoI
pooling svodi na fiksne dimenzije.

Faster R-CNN
[86] 2015.

Selektivnu pretragu zamjenjuje neuronskom mrežom
za generiranje prijedloga regija (engl. Region Propo-
sal Network, RPN), čime se znatno ubrzava proces de-
tekcije.

Mask R-CNN
[87] 2017.

Proširuje Faster R-CNN dodavanjem segmentacije
objekata uz detekciju, koristeći dodatni izlaz za se-
mantičku masku objekta.

O
ne

-s
ta

ge

YOLO
[88] 2016.

Dijeli ulaznu sliku na mrežu ćelija i za svaku ćeliju
predvid̄a granične okvire i vjerojatnosti klasa, koris-
teći samo jedan prolazak kroz neuronsku mrežu.

SSD
[89] 2016.

Takod̄er koristi jedan prolazak kroz mrežu, ali koristi
više slojeva različitih rezolucija za predvid̄anje granič-
nih okvira i klasa, što omogućuje učinkovitije prepoz-
navanje objekata različitih veličina.

RetinaNet
[90] 2017.

Koristi piramidalnu mrežu značajki (engl. Feature
Pyramid Network, FPN) za izdvajanje značajki na više
razina i primjenjuje fokusni gubitak (engl. focal loss)
kojim se rješava problem neravnoteže klasa.

CenterNet
[91] 2019.

Pristup detekciji u kojem je svaki objekt predstav-
ljen samo jednom središnjom točkom. Model generira
mapu ključnih točaka koja sadrži informacije o loka-
ciji središta objekata, njihovom pomaku te visini i ši-
rini graničnog okvira.

EfficientDet
[92] 2020.

Skalabilni model za detekciju koji kombinira dvos-
mjernu piramidalnu mrežu značajki (engl. Bidirecti-
onal Feature Pyramid Network, BiFPN) za učinkovitu
fuziju značajki na različitim razinama i skalirajuću ar-
hitekturu temeljenu na EfficentNetu.

slučajevima kada je lokalizacija objekta neprecizna [93].
Osnovna svrha ovog segmenta algoritma za praćenje jest procjena vjerojatne pozicije

objekta u narednom okviru videozapisa, oslanjajući se pri tom na njegovo trenutno stanje i
prethodne obrasce kretanja. U ovom kontekstu, Kalmanov filter i njegove modifikacije naj-
češće se koriste za predvid̄anje buduće pozicije objekta [81, 58, 59, 62, 60, 61, 94, 75, 66, 67].
Alternativno, umjesto Kalmanovog filtera, moguće je koristiti čestični filter (engl. particle

filter) [95, 96, 97] ili modele temeljene na dubokom učenju, kao što su RNN i LSTM ne-
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uronske mreže [98, 99, 100, 93], kao i arhitekture temeljene na transformerima [68, 101].
Med̄utim, ovi pristupi uvode dodatnu složenost u algoritam praćenja u vidu potrebe za do-
datnim treniranjem kompleksnih modela i povećane računske složenosti, u usporedbi s Kal-
manovim filterom koji je poznat po svojoj jednostavnosti, računalnoj efikasnosti i skromnim
zahtjevima za resursima.

Kalmanov filter

Kalmanov filter [26] rekurzivni je algoritam za procjenu stanja diskretnog dinamičkog sus-
tava temeljem matematičkog modela sustava i niza mjerenja koja u sebi sadrže šum. Termin
"filter" proizlazi iz činjenice da ovaj algoritam prilikom procjene stanja filtrira šum iz po-
dataka [102]. Tijekom vremena, Kalmanov filter kontinuirano poboljšava procjene stanja,
smanjujući utjecaj šuma i nesigurnosti.

Matematički model formalno opisuje kako se stanje sustava mijenja tijekom vremena te
je obično definiran s:

xt = Ftxt−1 +Btut +wt , (2.1)

gdje je Ft ∈ Rnx×nx tranzicijska matrica iz stanja u trenutku t − 1 do stanja u trenutku t,
ut ∈ Rnu kontrolni, vanjski ulaz koji može neposredno utjecati na stanje sustava, Bt ∈ Rnx×nu

matrica koja opisuje kako kontrolni ulaz utječe na stanje sustava, wt ∈ Rnx procesni šum koji
u obzir uzima nesavršenosti modela sustava. Mjerenje zt ∈ Rnz u trenutku t opisano je s:

zt = Htxt +vt , (2.2)

pri čemu Ht ∈ Rnz×nx označava matricu koja preslikava stanje sustava u prostor mjerenja,
a vt ∈ Rnz šum mjerenja. Pretpostavka je da su procesni šum i šum mjerenja nezavisne,
normalno distribuirane slučajne varijable za koje vrijedi [102, 103]:

vt ∼ N(0, Qt), wt ∼ N(0, Rt), (2.3)

gdje su Qt ∈ Rnx×nx i Rt ∈ Rnz×nz pozitivno definitne matrice kovarijance procesnog šuma i
šuma mjerenja, redom.

Napomena. nx,nz,nu ∈ N, gdje nx označava broj stanja u vektoru stanja, nz broj različitih

mjerenja koja pristižu u svakom koraku, a nu broj elemenata kontrolnog, vanjskog ulaza.

Kalmanov filter u svakoj iteraciji stanje dinamičkog sustava procjenjuje u dva koraka.
Prvo se, temeljem prethodnog stanja iz koraka t −1 i matematičkog modela sustava, računa
a priori procjena x̂t|t−1 ∈ Rnx sljedećeg stanja sustava i odgovarajuća matrica kovarijance
a priori pogreške procjene Pt|t−1 ∈ Rnx×nx . Zatim se, u drugom koraku, apriori pretpostavke
korigiraju temeljem novih, pristiglih mjerenja što rezultira poboljšanom a posteriori procje-
nom stanja x̂t|t ∈ Rnx i matricom kovarijance a posteriori pogreške procjene Pt|t ∈ Rnx×nx .
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Jednadžbe Kalmanovog filtera stoga se mogu podijeliti na dvije grupe:

predikcija

 x̂t|t−1 = Ft x̂t−1|t−1 +Btut

Pt|t−1 = FtPt−1|t−1F⊤
t +Qt

(2.4)

korekcija


Kt = Pt|t−1H⊤

t (HtPt|t−1H⊤
t +Rt)

−1

x̂t|t = x̂t|t−1 +Kt(zt −Ht x̂t|t−1)

Pt|t = (I −KtHt)Pt|t−1

(2.5)

Kalmanovo pojačanje Kt ∈ Rnx×nz iz (2.5) je odabrano tako da minimizira kovarijancu a
posteriori pogreške, osiguravajući tako optimalnost Kalmanovog filtera uz pretpostavke line-
arnosti i Gaussove distribucije šuma. Ono odred̄uje utjecaj mjerenja zt u odnosu na predvi-
d̄anje x̂t|t−1 pri izračunu ažuriranog stanja sustava x̂t|t u korektivnom koraku. Nakon svakog
para koraka predikcije i korekcije, postupak se ponavlja uz korištenje dobivenih a posteriori
procjena prilikom predvid̄anja novih a priori procjena. Cijeli proces rada Kalmanovog filtera
shematski je prikazan na Slici 2.2.

KOREKCIJA
MJERENJE

PREDIKCIJA

IZLAZ

KONTROLNI 

ULAZ

INICIJALNE


VRIJEDNOSTI

Slika 2.2: Dijagram Kalmanovog algoritma.

U kontekstu praćenja više objekata, mjerenja u trenutku t odgovaraju detekcijama obje-
kata u okviru t danog videozapisa. Detekcije se obično opisuju vektorom z= (xc, yc, w, h, c),
gdje (xc, yc) predstavljaju koordinate središta, w i h širinu i visinu graničnog okvira, a c po-
uzdanost u danu detekciju [58, 27]. Vektor stanja sustava Kalmanovog filtera, koji se koristi
u algoritmima praćenja više objekata, obično sadrži informacije o položaju i dimenzijama
objekta, kao i o brzini promjene tih vrijednosti. Na primjer, SORT [58] koristi vektor sta-
nja x = (xc, yc, a, r, ẋc, ẏc, ȧ), dok algoritmi poput DeepSORT-a [59], ByteTrack-a [60],
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StrongSORT [62] i FairMOT-a [66] koriste x = (xc, yc, r, h, ẋc, ẏc, ṙ, ḣ). S druge strane,
BoT-SORT [61] vektor stanja definira kao x = (xc, yc, h, w, ẋc, ẏc, ḣ, ẇ). Ovdje a = w · h
predstavlja površinu graničnog okvira, a r = w

h omjer širine i visine okvira.

Generalizacije Kalmanovog filtera

U sklopu GIAOTracker [104] algoritma praćenja predstavljena je modifikacija Kalmanovog
filtera, NSA (Noise Scale Adaptive) Kalman, koji prilagod̄ava kovarijancu šuma mjerenja u
skladu s pouzdanošću detekcija:

R̃t = (1− ct)Rt , (2.6)

gdje je Rt unaprijed postavljena konstantna kovarijanca šuma, a ct pouzdanost detekcije. Što
je pouzdanost ct veća, to R̃t poprima manje vrijednosti, što implicira da će u korektivnom
koraku, tijekom ažuriranja stanja sustava, veća težina biti stavljena na mjerenje, odnosno
detekciju [62].

S obzirom na to da Kalmanov filter podrazumijeva linearno kretanje objekta, što ne mora
uvijek biti slučaj, razvijene su inačice originalnog algoritma koja su prikladne za procjenu
stanja nelinearnih sustava: prošireni Kalmanov filter (engl. Extended Kalman Filter, EKF)
[105] i Unscented varijanta Kalmanovog filtera (UKF) [106]. EKF linearizira nelinearne
modele sustava i mjerenja koristeći Taylorov razvoj prvog reda. Med̄utim, ovaj pristup može
dovesti do loše aproksimacije u sustavima s jako izraženom nelinearnosti budući da se čla-
novi višeg reda zanemaruju [107, 108]. S druge strane, UKF zaobilazi derivacije i koristi
transformaciju koja se temelji na preciznom odabiru sigma točaka iz distribucije stanja i
njihovoj propagaciji kroz modele sustava i mjerenja, što je čini robusnijom u slučajevima
jakih nelinearnosti [109], ali uz puno veće računalne zahtjeve. No, navedeni pristupi pret-
postavljaju Gaussovu distribuciju i zahtijevaju unaprijed definirane obrasce kretanja [27]. S
druge strane, čestični filter (engl. particle filters) generalizira Kalmanov filter na probleme
procjene stanja nelinearnih sustava čija distribucija ne mora nužno biti Gaussova [110] kori-
štenjem skupa čestica i pridruženih normaliziranih težina za procjenu funkcije gustoće vje-
rojatnosti stanja sustava, ali su računski vrlo zahtjevni [111]. Zbog toga se navedene metode
rijetko koriste u zadacima vizualnog praćenja više objekata, u kojima i dalje prevladava stan-
dardni Kalmanov filter [27].

2.2.3. Ekstrakcija značajki

Ekstrakcija značajki ključan je korak MOT algoritma koji omogućuje identifikaciju i razli-
kovanje objekata, što je neophodno za njihovo praćenje kroz vrijeme. Ovaj korak uključuje
izdvajanje relevantnih informacija koje opisuju objekt, a koje se zatim koriste za asocijaciju
detekcija iz različitih okvira videozapisa s istim objektom. Stoga je od presudne važnosti
kreirati značajke koje su robusne na promjene izgleda istog objekta tijekom vremena, a is-
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tovremeno dovoljno diskriminativne da jasno razlikuju različite objekte. Značajke koje se
najčešće koriste uključuju one vezane uz vizualne karakteristike objekta poput boje, oblika
ili teksture, te značajke koje kodiraju svojstva kretanja objekta kao što su brzina, pozicija
i akceleracija, zajedno s prostornim značajkama poput orijentacije, udaljenosti i dimenzije
objekta. Iako različite vrste značajki pružaju komplementarne informacije, one se obično
promatraju zasebno te se naknadno kombiniraju prilikom izračuna sličnosti [112, 75, 59].

Vizualne značajke

Zbog svoje sposobnosti da automatski izvlače složene značajke iz ulaznih podataka, konvo-
lucijske neuronske mreže postale su vodeća metoda za ekstrakciju vizualnih značajki u
MOT algoritmima [44]. Slika 2.3 prikazuje proces ekstrakcije vizualnih značajki detekcija
jednog okvira videozapisa pomoću konvolucijske neuronske mreže. Detekcija Di šalje se na
ulaz konvolucijske mreže, koja koristi niz konvolucijskih slojeva i slojeva sažimanja za iz-
dvajanje značajki iz slike, postepeno napredujući od jednostavnijih ka složenijima. Na kraju
mreže, potpuno povezani sloj [112, 113, 114] ili, alternativno, sloj globalnog prosječnog sa-
žimanja (engl. Global Average Pooling) [115, 116] pretvara konvolucijske značajke u realni
vektor f (Di) ∈ Rn fiksne duljine, koji numerički reprezentira ključne karakteristike ulazne
slike.

Slika 2.3: Ekstrakcija vizualnih značajki detekcija pomoću konvolucijske neuronske mreže.

Jedan od prvih primjera primjene konvolucijskih značajki za praćenje objekata opisan
je u [112], gdje autori koriste predtreniranu konvolucijsku neuronsku mrežu kako bi izvukli
4096-dimenzionalni vektor značajki iz svakog graničnog okvira. Dobiveni vektori se za-
tim reduciraju na 256 dimenzija korištenjem PCA algoritma [117]. Pojedini istraživači za
ekstrakciju vizualnih značajki u MOT algoritmima koriste standardne arhitekture konvolu-
cijskih neuronskih mreža, poput GoogLeNet [75, 118, 119, 120], ResNet [100, 121, 122]
i VGG [123, 124, 93] arhitektura. Većinom se radi o neuronskim mrežama predtrenira-
nim na velikim skupovima podataka, poput ImageNet [125] skupa podataka za klasifikaciju
[121, 123, 124], koje se naknadno prilagod̄avaju specifičnostima zadatka od interesa, od-
nosno primjenjuju metodu učenja prijenosom znanja (engl. transfer learning).

16



Poglavlje 2. PROBLEM PRAĆENJA VIŠE OBJEKATA

Drugi pristup, koji se takod̄er zasniva na konvolucijskim neuronskim mrežama, je ek-
strakcija značajki pomoću sijamskih neuronskih mreža koje se koriste za učenje sličnosti.
Sijamske neuronske mreže [126] najčešće se sastoje od dvije ili tri identične podmreže
koje se zajedno treniraju i kojima se težine za vrijeme treniranja zrcalno ažuriraju. Ilustra-
cija sijamskih neuronskih mreža prikazana je na Slici 2.4.

Slika 2.4: Sijamska neuronska mreža s dvije podmreže (a) i s tri podmreže (b).

Kada se koriste dvije podmreže, sijamska neuronska mreža na ulaz prima par slika i
izračunava kontrastivni gubitak (engl. contrastive loss) [127]:

L(I1, I2) = y · 1
2
∥ f (I1)− f (I2)∥2

2 +(1− y) · 1
2

max
{

0, m−∥ f (I1)− f (I2)∥2
}2
, (2.7)

gdje je m > 0 unaprijed zadana margina koja odred̄uje radijus sličnosti, y = 1 za slike istog
objekta (slične slike), dok je y = 0 za različite. U slučaju korištenja tri podmreže, na ulaz
sijamske mreže šalju se tri slike: temeljna slika (engl. anchor) (I2), pozitivni primjer (I3)

sličan temeljnoj slici i negativan primjer (I1) koji se od nje razlikuje. Tijekom treniranja
minimizira se trojni gubitak (engl. triplet loss) [128]:

L(I1, I2, I3) = max
{

0, ∥ f (I2)− f (I3)∥2
2 −∥ f (I2)− f (I1)∥2

2 +m
}

(2.8)

U oba slučaja, cilj je isti: smanjiti udaljenost vektora značajki sličnih (pozitivnih) primjera i
istovremeno povećati udaljenost vektora značajki različitih (negativnih) primjera.

U kontekstu algoritama za praćenje više objekata, Kim i suradnici [129] koriste konvo-
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lucijsku podmrežu sijamske neuronske mreže, treniranu uz kontrastivni gubitak, kako bi iz
ulazne slike izdvojili vektor značajki. Varijante sijamskih neuronskih mreža koje takod̄er
primaju dva ulaza, ali ne koriste klasični kontrastivni gubitak, primijenjene su u radovima
[130, 131]. S druge strane, Zhou i suradnici [132] koriste podmrežu sijamske neuronske
mreže trenirane s trojnim gubitkom kako bi iz ulazne slike izdvojili 128-dimenzionalni vek-
tor značajki. U radu [133], za ekstrakciju vektora značajki korištena je GoogLeNet pod-
mreža sijamske neuronske mreže uz trojni gubitak. Drugi pristup predlaže korištenje pod-
mreže sijamske mreže s poboljšanom inačicom trojnog gubitka (SymTriplet) [134], koja
uzima u obzir i udaljenost izmed̄u vektora značajki negativnog i pozitivnog primjera, od-
nosno ∥ f (I1)− f (I3)∥2.

Kombinacija različitih vrsta značajki

U cilju poboljšanja robusnosti i preciznosti algoritama za praćenje objekata, istraživači u ra-
dovima [75, 94, 135] kombiniraju vizualne značajke dobivene konvolucijskim neuronskim
mrežama s informacijama o kretanju i obliku objekta. Yu i suradnici [75] integriraju značajke
dobivene GoogLeNet konvolucijskom mrežom s prostornim značajkama koje opisuju kreta-
nje i oblik objekta dobivenih pomoću atributa graničnih okvira predvid̄enih Kalmanovim
filterom i novih detekcija. U [94], vizualne značajke dobivene konvolucijskom neuronskom
mrežom koriste se zajedno sa značajkama koje opisuju veličinu, poziciju i dinamiku kretanja
objekta. Bae i Yoon [135] takod̄er predlažu kombinaciju konvolucijskih značajki sa značaj-
kama modela kretanja i oblika objekta koji se prati. Vizualne značajke dobivene rezidualnom
konvolucijskom mrežom se u [59] koriste zajedno s informacijama o kretanju. Nešto dru-
gačiji pristup predstavljen je u [93], gdje se vizualne značajke i značajke kretanja izdvajaju
zasebno korištenjem konvolucijske VGG16 mreže i LSTM mreže, a zatim se integriraju u
jedinstveni vektor značajki pomoću Metric-Net mreže trenirane s trojnim gubitkom.

2.2.4. Mjere sličnosti

Kako bi se detekcije iz novog okvira videozapisa mogle uspješno povezati s odgovarajućim
prethodno praćenim objektima u koraku asocijacije, potrebno je procijeniti njihovu med̄u-
sobnu sličnost ili, ekvivalentno, udaljenost. Ta se sličnost može temeljiti na jednoj relevant-
noj komponenti, poput kretanja [58, 136], ili pak kombinirati više različitih faktora, uključu-
jući vizualni izgled, dinamiku kretanja i oblik objekta [135, 75, 94, 59, 81]. Općenito, mjere
sličnosti mogu se podijeliti u tri glavne kategorije: prostorne, vizualne i kombinirane mjere
sličnosti [137].

Prostorne i dinamičke mjere sličnosti

Prostorne, odnosno geometrijske, mjere sličnosti kvantificiraju sličnost izmed̄u dva objekta,
koji su najčešće reprezentirani pravokutnim graničnim okvirima, uspored̄ujući njihov polo-
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žaj, oblik ili veličinu. One najčešće procjenjuju koliko se blizu jedan drugome nalaze dva
objekta u prostoru te u kojoj mjeri im se oblici podudaraju.

Jedna od najčešće korištenih mjera sličnosti je IoU (engl. Intersection over Union) [58,
68, 60, 136, 129, 59, 61, 81], koja računa omjer površine presjeka dvaju graničnih okvira A

i B u odnosu na površinu njihove unije. Matematički, IoU se definira kao:

IoU(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
, (2.9)

gdje | · | označava površinu. U algoritmima za praćenje više objekata, IoU se obično računa
izmed̄u graničnih okvira detekcija iz novog okvira videozapisa i graničnih okvira predvid̄e-
nih stanja postojećih putanja [58, 68, 60, 59, 61, 81] ili izmed̄u graničnih okvira detekcija iz
susjednih okvira koje se povezuju u putanje [136, 129]. U radovima [58, 136, 68, 60], IoU
se koristi kao jedina mjera sličnosti prilikom povezivanja putanja i detekcija.

Napomena. Umjesto IoU vrijednosti direktno, u algoritmima praćenja koristi se i IoU uda-

ljenost zadana s: dIoU(A,B) = 1− IoU(A,B).

U radu [65], kao mjera sličnosti izmed̄u objekta A i objekta B koristi se euklidska uda-
ljenost njihovih centara CA = (x1,y1) i CB = (x2,y2):

d2(CA,CB) =
√

(x1 − x2)2 − (y1 − y2)2. (2.10)

Kako bi integrirali informaciju o dinamici kretanju u izračun sličnosti, u radovima [67,
59, 114, 66, 62] koriste Mahalanobisovu udaljenost [138] koja uzima u obzir korelaciju
promatranih varijabli i njihove varijance. Mahalanobisova udaljenost definirana je s

dMhD(x,y) =
√

(x−y)⊤S−1(x−y), (2.11)

gdje su x,y ∈ Rn, a S matrica kovarijance. Na primjer, u [59], računa se kvadrat Mahalano-
bisove udaljenosti gdje x predstavlja detekciju iz trenutnog okvira videozapisa, dok su y i S

projekcije stanja i kovarijance putanje, predvid̄ene Kalmanovim filterom, u prostor mjerenja.

Vizualne mjere sličnosti

Vizualne mjere sličnosti koriste se za prepoznavanje istog objekta kroz različite vremen-
ske okvire na temelju njegovih vizualnih karakteristika. Ove mjere se obično oslanjaju na
visokodimenzionalne vektore značajki generirane dubokim modelima poput konvolucijskih
neuronskih mreža [139].

Za kvantificiranje vizualne sličnosti najčešće se koristi kosinusna sličnost vektora zna-
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čajki [75, 132, 59, 119, 67, 66], definirana s:

cos(fD, fT ) =
⟨fD, fT ⟩

∥fD∥2 ∥fT∥2
, (2.12)

gdje su fD i fT n-dimenzionalni vektori značajki detekcije D i putanje T .

Napomena. Umjesto kosinusne sličnosti, obično se računa kosinusna udaljenost dcos(fD, fT )

definirana s dcos(fD, fT ) = 1− cos(fA, fB).

Pored kosinusne sličnosti, još se često koristi i euklidska udaljenost vektora značajki
[129, 134, 133]:

d2(fD, fT ) = ∥fD − fT∥2 =

√
n

∑
i=1

( fD,i − fT,i)2. (2.13)

Prednost kosinusne sličnosti u odnosu na euklidsku udaljenost je u njenoj neosjetljivosti na
skaliranje podataka i učinkovitosti u visokodimenzionalnim prostorima. Vektori se smatraju
sličnima ako imaju istu orijentaciju u prostoru, bez obzira na njihovu veličinu. S druge
strane, euklidska udaljenost mjeri stvarnu geometrijsku udaljenost izmed̄u vektora, uzima-
jući u obzir razlike kako u njihovoj veličini, tako i u orijentaciji.

Kombinirane mjere sličnosti

Prostorne i vizualne mjere sličnost pružaju različite, ali med̄usobno komplementarne infor-
macije u procesu praćenja objekata, a njihova kombinacija omogućuje značajno poboljšanje
točnosti asocijacije i povećanje robusnosti sustava za praćenje [137, 139].

Najjednostavniji način kreiranja kombinirane mjere sličnosti temelji se na težinskoj sumi.
Neka su dane dvije mjere sličnosti s1 i s2 zajedno s odgovarajućim težinama w1,w2 ∈R. Tada
se kombinirana mjera sličnosti s jednostavno može definirati kao [137]:

s = w1s1 +w2s2. (2.14)

Na ovaj način omogućuje se prilagodba doprinosa prostornih i vizualnih mjera ovisno o
specifičnostima zadanog sustava.

2.2.5. Asocijacija

U koraku asocijacije cilj je odrediti kojoj od postojećih praćenih putanja pripada detekcija
iz trenutnog okvira ili, alternativno, predstavlja li ta detekcija novi objekt koji tek treba
početi pratiti. Problem optimalnog pridruživanja detekcija postojećim putanjama može se
formulirati kao problem pridruživanja maksimalne težine u potpunom težinskom bipartitnom
grafu. Ta se formulacija jednostavno može prilagoditi i problemu pridruživanja minimalne
težine, kada se umjesto sličnosti koriste različite mjere udaljenosti kao cijene pridruživanja
detekcija postojećim putanjama objekata.
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Mad̄arski algoritam

Neka je T = {T1, . . . ,Tn} skup postojećih putanja objekata, a Dt = {D1, . . . ,Dm} skup de-
tekcija iz trenutnog okvira t videozapisa. Nadalje, neka je G = (V, E), gdje je V = T ∪Dt

skup vrhova, a E = T ×Dt skup bridova, potpuni težinski bipartitni graf s funkcijom težine
w : E → R+0 koja svakom bridu (Ti, D j) pridruži cijenu pridruživanja detekcije D j putanji
Ti, odnosno w(Ti, D j) = s(Ti, D j), gdje je s odabrana mjera sličnosti. Jedan primjer takvog
grafa prikazan je na Slici 2.5.

Pridruživanje M u grafu G je podskup bridova M ⊆ E takav da za svaki vrh v ∈V vrijedi
da je incidentan najviše jednom bridu iz M. Težina pridruživanja M jednaka je sumi težina
svih bridova e ∈ M:

w(M) = ∑
e∈M

w(e). (2.15)

Cilj je za dani bipartitni graf G odrediti pridruživanje M maksimalne težine. Navedeno,
optimalno pridruživanje može se pronaći pomoću mad̄arskog algoritma.

Detekcije

(     )

10

41


31


27


21


77

35


11


47


15



20


80


50


83
17


Postojeće putanje 
 (     )

Slika 2.5: Ilustracija bipartitnog grafa kakav se koristi prilikom pridruživanja putanja i
detekcija primjenom mad̄arskog algoritma.

Mad̄arski algoritam [140], takod̄er poznat i pod nazivom Kuhn-Munkersov algoritam,
problem pridruživanja rješava u polinomijalnom vremenu O(n3) gdje je n= |T |= |D| [141].
Iako datira još iz 1955. godine, mad̄arski algoritam je najčešće korišteni algoritam za aso-
cijaciju detekcija i putanja u algoritmima praćenja [75, 134, 94, 135, 58, 61, 60, 77, 67, 93,
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66, 68, 129]. U slučaju da pretpostavka |T | = |D| ne vrijedi, u particiju vrhova manje kar-
dinalnosti može se dodati odgovarajući broj fiktivnih čvorova koji se onda povezuju sa svim
vrhovima iz druge particije bridovima težine 0, odnosno minimalne vrijednosti sličnosti.
Dani bipartitni graf može se reprezentirati n× n matricom susjedstva C = [ci, j] kojoj retci
odgovaraju putanjama, a stupci detekcijama pri čemu je ci, j = w(Ti, D j). Tada je mad̄arska
metoda dana Algoritmom 1. Ako matrica susjedstva C sadrži udaljenosti, a ne sličnosti, onda
se traži pridruživanje minimalne težine i preskače se prvi korak algoritma.

Algoritam 1 Mad̄arski algoritam

Ulaz: n×n matrica susjedstva C = [ci, j]
Izlaz: optimalno pridruživanje redaka i stupaca matrice

1. Svod̄enje problema maksimizacije na problem minimizacije:

Vrijednost ci, j svake ćelije zamijeniti razlikom Cmax − ci, j gdje je Cmax
maksimalna vrijednost dane matrice susjedstva.

2. Redukcija redaka:

Od svake vrijednosti u retku oduzeti minimalnu vrijednost tog retka.

3. Redukcija stupaca:

Od svake vrijednosti u stupcu oduzeti minimalnu vrijednost tog stupca.

4. Minimalna pokrivenost:

Minimalnim brojem vertikalnih i horizontalnih linija precrtati retke i stupce
matrice tako da sve nule budu precrtane.

5. Ako je broj nacrtanih linija jednak n:

6. vrati {(i, j) : ci, j = 0}

7. Inače:

8. Pronad̄i najmanji element matrice koji nije precrtan linijama.

9. Taj element oduzmi od svih elemenata redaka koji nisu precrtani.

10. Taj element dodaj svim elementima stupaca koji su precrtani.

11. Vrati se na liniju 4.

Pridruživanje detekcija postojećim putanjama može se provoditi u jednoj fazi [58, 62,
136] ili u više njih [59, 60, 61, 27]. DeepSORT [59] koristi kaskadno pridruživanje kod
kojeg se detekcije ne povezuju sa svim postojećim putanjama odjednom, već se asocija-
cija provodi u više ciklusa, uzimajući u obzir starost putanja. U prvom ciklusu, detekcije
se pokušavaju pridružiti najmlad̄im putanjama koje su u prethodnom okviru uspješno ažu-
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rirane (dob = 1), a zatim se u narednim ciklusima asocijacija proširuje na starije putanje
(dob = 2, . . . ,dobmax) i preostale neuparene detekcije. U svakom ciklusu pridruživanja ko-
risti se ista mjera sličnosti. Druga popularna varijanta asocijacije je ona u dvije faze [60, 61].
ByteTrack [60] i BoT-SORT [61] upotrebljavaju varijantu pridruživanja u dvije faze u kojoj
se u prvoj fazi putanjama pridružuju detekcije visoke pouzdanosti temeljem vizualne slič-
nosti i/ili IoU mjere preklapanja graničnih okvira, dok se u drugoj fazi neuparene putanje
pokušavaju povezati s detekcijama niže pouzdanosti isključivo temeljem IoU sličnosti.

Alternativne metode asocijacije

Umjesto mad̄arskog algoritma, u [129, 142, 65] koristi se jednostavni pohlepni algoritam,
koji u svakom koraku pridružuje parove detekcija i putanja s najvećom vrijednošću izraču-
nate sličnosti. Zbog svoje efikasnosti, pohlepna metoda asocijacije koristi se i u [143] za
postizanje online praćenja u stvarnom vremenu.

Azizpour i suradnici [144] predstavljaju algoritam asocijacije koji se temelji na problemu
pridruživanja grafa putanja i grafa detekcija, koristeći pritom kvadratno programiranje i graf
neuronske mreže (engl. graph neural networks). S druge strane, u [145, 98] primjenjuje
se LSTM mreža za asocijaciju, dok Yoon i suradnici [146] predlažu neuronsku mrežu koja
se sastoji od enkodera s potpuno povezanim slojevima i dvosmjerne LSTM mreže u deko-
deru. Navedene metode asocijacije unose znatno računsko opterećenje, što onemogućava
izvod̄enje algoritama u stvarnom vremenu.

2.2.6. Upravljanje putanjama

U koraku upravljanja putanjama provode se sljedeće operacije: 1) ažuriranje stanja posto-
jećih putanja kojima je uspješno pridružena detekcija u koraku asocijacije, 2) inicijalizacija
novih putanja za detekcije koje nisu uspješno pridružene postojećim putanjama, 3) završa-
vanje putanja objekata koji su napustili scenu.

1) Ažuriranje stanja putanja
Ovaj proces obuhvaća ažuriranje vrijednosti promatranih varijabli putanja na temelju pri-
druženih detekcija, odnosno novih mjerenja. U praksi, to može uključivati korektivni
korak Kalmanovog filtera, gdje se stanje putanje ažurira kombinacijom predvid̄enog sta-
nja i inovacije, koja predstavlja razliku izmed̄u predvid̄enih i stvarnih mjerenja. Takod̄er,
može se koristiti prilagodba vizualnih značajki putanja temeljem vizualnih značajki no-
vih, pridruženih detekcija [67].

2) Inicijalizacija novih putanja
Nepridružena detekcija ne rezultira uvijek automatskim stvaranjem nove putanje. Nova
putanja obično se ne dodaje odmah u skup postojećih i aktivnih putanja, budući da pos-
toji mogućnost da se radi o lažno pozitivnoj detekciji. Uobičajena praksa je stvaranje
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probnih putanja za nepridružene detekcije, koje se inicijaliziraju tek nakon što opstanu
odred̄eno testno razdoblje [58, 67]. Na primjer, u [67], nova putanja se stvara samo ako
odgovarajuća detekcija preživi dva uzastopna okvira videozapisa. S druge strane, Zhang
i suradnici [60] odmah inicijaliziraju putanje, ali isključivo za nepridružene detekcije vi-
soke pouzdanosti.

3) Završavanje putanja
Postojeće putanje obično se ne prekidaju odmah ako im se u jednom okviru nije uspjelo
pridružiti detekciju, jer to može biti posljedica privremene zaklonjenosti praćenog objekta
ili neuspješne detekcije. Umjesto toga, putanje se najčešće završavaju nakon odred̄enog
broja uzastopnih neuspješnih pokušaja pridruživanja detekcija [58, 142, 67, 61, 66, 68].
Na primjer, u [67, 61, 66], putanje se završavaju nakon 30 uzastopnih neuspješnih pri-
druživanja. Nasuprot tome, u radu [143], putanja se završava ako joj u nizu od Nmiss

uzastopnih okvira nije uspješno pridružena niti jedna detekcija ili ako je broj pridruženih
detekcija manji od broja nedostajućih detekcija za tu putanju.

Mahmoudi i suradnici [94] kao izlaz prikazuju samo stabilne putanje koje ispunjavaju
sljedeće kriterije: 1) najviše τinv okvira putanji nije uspješno pridružena detekcija, 2) omjer
broja okvira tijekom postojanja putanje u kojima je putanji pridružena detekcija i broja okvira
u kojima to nije bio slučaj veći je od τvis, 3) prosječna cijena pridruživanja detekcije putanji
manja je od τcost . Rad [98] koristi rekurentnu neuronsku mrežu za predvid̄anje vjerojat-
nosti ε postojanja putanje u sljedećem okviru na temelju prethodno prikupljenih informacija.
Vrijednost ε koristi se za odluku o inicijalizaciji ili završavanju putanje objekta.

2.3. Popularni algoritmi temeljeni na detekciji

Algoritmi praćenja temeljeni na detekciji predstavljaju vodeći pristup zadatku praćenja više
objekata [147, 148]. Najpoznatiji predstavnik ove kategorije algoritama je SORT [58], brz i
efikasan algoritam praćenja koji je pogodan za izvršavanje aplikacija u stvarnom vremenu.
SORT je postavio temelje za razvoj mnogih popularnih algoritama koji dodatno unapred̄uju
osnovni koncept SORT-a prilagod̄avajući ga različitim izazovima praćenja više objekata.

SORT (Simple Online and Realtime Tracking) [58] koristi Kalmanov filter za predvi-
d̄anje sljedećeg stanja praćenih objekata, nakon čega se nove detekcije pokušavaju pridru-
žiti odgovarajućim putanjama koristeći mad̄arski algoritam i IoU predvid̄enih i detektiranih
graničnih okvira kao mjeru sličnosti. Kako bi se očuvala efikasnost algoritma, putanje se
završavaju čim im u jednom koraku nije pridružena detekcija. Ako se objekt, čija je putanja
završena, ponovo pojavi, praćenje se nastavlja s novim identitetom, što rezultira fragmenta-
cijom putanja i gubitkom kontinuiteta praćenja.

Wojke i suradnici [59] predlažu DeepSORT algoritam, koji u SORT integrira vizualnu
informaciju kodiranu 128-dimenzionalnim vektorom značajki dobivenih dubokom neuron-
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skom mrežom. DeepSORT koristi kaskadno pridruživanje u kojem se detekcije putanjama
pridružuju po starosti. Prilikom pridruživanja koristi se metrika koja kombinira informaciju
o dinamici kretanju objekta i vizualnu informaciju: d = λdcos + (1− λ)dMhD, gdje dMhD

predstavlja kvadrat Mahalanobisove udaljenosti predvid̄enog Kalmanovog stanja putanje i
detekcije, a dcos minimalnu kosinusnu udaljenost vizualnih značajki nove detekcije i zna-
čajki zadnjih 100 detekcija koje su pridružene danoj putanji. Koristeći unaprijed definirane
granične vrijednosti θMhD i θvis za dMhD i dcos, filtriraju se neprihvatljiva pridruživanja. U
eksperimentima iz [59], korištenje λ = 1 implicira da se informacija o kretanju dMhD koristi
isključivo za filtriranje neprihvatljivih pridruživanja. Nakon kaskadnog pridruživanja, ne-
pridružene detekcije i putanje se pokušavaju povezati koristeći IoU udaljenost. Za razliku
od SORT-a, putanje se ne završavaju odmah, već nakon što im tijekom 30 uzastopnih okvira
nije pridružena detekcija.

U [60], autori predlažu novu metodu asocijacije koja u obzir uzima gotovo sve detek-
tirane granične okvire, čak i one s malom pouzdanošću, i implementiraju je u ByteTrack
algoritam. Granični okviri s malom pouzdanošću mogu indicirati postojanje objekata koji su
djelomično zaklonjeni, pa njihovo filtriranje može dovesti do fragmentacije putanja praćenih
objekata. Predložena metoda asocijacije, koja se temelji na mad̄arskom algoritmu, odvija se
u dvije faze. U prvoj fazi putanjama se pokušavaju pridružiti detekcije visoke pouzdanosti
koristeći ili IoU ili udaljenost vektora vizualnih značajki detekcija i predvid̄anja Kalmanovog
filtera. U drugoj fazi se neuparenim putanjama pridružuju detekcije koje imaju nižu pouz-
danost koristeći isključivo IoU kao mjeru sličnosti, budući da takvi granični okviri obično
sadrže zaklonjene objekte.

BoT-SORT algoritam [61] integrira sljedeće modifikacije u ByteTrack: (1) dodatno se
upotrebljava kompenzacija pokreta kamere, (2) koristi se poboljšana verzija Kalmanovog
filtera koja u vektoru stanja koristi direktno visinu i širinu graničnog okvira, umjesto visine
i omjera širine i visine graničnog okvira, (3) u prvoj fazi asocijacije, u kojoj se putanjama
pridružuju detekcije visoke pouzdanosti, koristi se mjera udaljenosti koja povezuje vizualne
značajke i značajke kretanja. Cijena C(Ti,D j) pridruživanja detekcije D j putanji Ti u prvoj
fazi asocijacije dana je s C(Ti,D j) = min{dIoU

i, j , d̂cos
i, j }, gdje je dIoU

i, j IoU udaljenost predvi-
d̄enog graničnog okvira za putanju Ti i detektiranog graničnog okvira D j, a d̂cos

i, j predložena
mjera vizualne udaljenosti definirana s:

d̂cos
i, j =

0.5 ·dcos
i, j , (dcos

i, j < θvis)∧ (dIoU
i, j < θIoU)

1, inače
, (2.16)

pri čemu je dcos
i, j kosinusna udaljenost vektora značajki detekcije D j i eksponencijalnog po-

mičnog prosjeka vektora značajki detekcija pridruženih putanji Ti, a θIoU = 0.5 i θvis = 0.25
granične vrijednosti kojima se odbacuju slabo vjerojatna pridruživanja.
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StrongSORT [62] unaprjed̄uje DeepSORT na različite načine: (1) koristi ECC [149] mo-
del za kompenzaciju pokreta kamere, (2) implementira NSA Kalmanov filter [104] umjesto
običnog Kalmana, (3) za ekstrakciju vizualnih značajki koristi BoT ekstraktor [150] s Res-
NeSt50 [151] okosnicom, (4) za opis vizualnog izgleda putanje koristi eksponencijalni po-
mični prosjek vizualnih značajki pridruženih detekcija, (5) kao mjeru udaljenosti koristi li-
nearnu kombinaciju d = λdcos+(1−λ)dMhD, pri čemu je λ = 0.98, te se vrijednost dMhD ne
koristi samo za filtriranje neprihvatljivih pridruživanja već se i direktno integrira u konačnu
udaljenost, (6) za asocijaciju koristi jednostavno pridruživanje, umjesto kaskadnog pridruži-
vanja. Dodatno, predložena su dva jednostavna i učinkovita algoritma za post-procesiranje:
AFLink metoda za globalnu asocijaciju putanja koja koristi isključivo prostorno-vremenske
informacije i GSI algoritam za interpolaciju putanja baziran na Gaussovoj regresiji procesa,
koji se koristi za ublažavanje nepravilnosti nastalih zbog nedostajućih detekcija. Strong-

SORT++ predstavlja nadogradnju StrongSORT algoritma u kojoj su implementirani nave-
deni post-procesni koraci.

OC-SORT (Observation-Centric SORT) [27] generalizirana je verzija klasičnog SORT
algoritma koja povećava robusnost praćenja u situacijama okluzije objekata i njihovog neli-
nearnog kretanja. Ova metoda uvodi tri ključna modula koja nadograd̄uju standardni Kal-
manov filter i metodu asocijacije putanja i detekcija. Prvi od njih je modul dodatne ko-
rekcije temeljene na opažanjima (engl. Observation-Centric Re-Update, ORU) koji koristi
virtualnu putanju z̃t = zt1 +

t−t1
t2−t1

(zt2 − zt1), t1 < t < t2, dobivenu linearnom interpolacijom
posljednje poznate detekcije zt1 izgubljenog objekta i nove detekcije zt2 s kojom je objekt po-
vezan nakon okluzije, kako bi se retroaktivno izvršili korektivni koraci Kalmanovog filtera
u vremenskim trenutcima u kojima su stvarna mjerenja izostala, čime se smanjuje akumuli-
rana pogreška predvid̄anja i poboljšava preciznost praćenja nakon završetka okluzije. Druga
nadogradnja odnosi se na moment temeljen na opažanjima (engl. Observation-Centric Mo-

mentum, OCM): dodatni kriterij zasnovan na konzistentnosti smjera kretanja ∆θ koji se uvodi
u cijenu pridruživanja, d = −IoU + ∆θ, što je naročito korisno kod nelinearnog kretanja
objekata. Posljednje poboljšanje obuhvaća pokušaj ponovne asocijacije neuparenih puta-
nja temeljem njihovih posljednjih opažanja (engl. Observation-Centric Recovery, OCR),
što pomaže u oporavku putanja objekata koji su kratkotrajno zaklonjeni ili izgubljeni, pri
tom se kao cijena pridruživanja koristi samo −IoU .

Maggiolino i sur. [152] uvode adaptivnu integraciju vizualnih značajki u OC-SORT algo-
ritam, koji se temelji isključivo na informacijama o kretanju objekata. Predloženi Deep OC-
SORT algoritam za ažuriranje vizualnih značajki putanje koristi eksponencijalni pomični
prosjek s dinamičkim faktorom težine αt koji ovisi o pouzdanosti detekcija. Nadalje, kao
mjera sličnosti u fazi asocijacije koristi se kombinacija IoU i kosinusne udaljenosti vizualnih
vektora značajki, pri čemu se težina vizualnog dijela prilagod̄ava ovisno o diskriminativnosti
izgleda objekta. Naime, ako je neka putanja ili detekcija jasno povezana samo s jednim kan-
didatom, tj. velika je razlika izmed̄u najbolje i druge najbolje vrijednosti sličnosti, onda se
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težina vizualnog dijela za taj par povećava.
BoostTrack [63] algoritam koristi metodu asocijacije u jednoj fazi u kojoj se sve de-

tekcije (uključujući i one s niskom pouzdanošću) koriste zajedno u jednom koraku. Mjera
sličnosti koja se pri tom koristi dobije se zbrajanjem osnovne IoU sličnosti sbase i ponde-
riranih dodataka koji se koriste za "boostanje" sličnosti, a oni uključuju: 1) IoU udalje-
nost skaliranu umnoškom pouzdanosti detekcije i pouzdanosti putanje, pri čemu pouzda-
nost putanje ovisi o njenoj starosti i vremenu od posljednjeg ažuriranja, kojom se implicitno
favoriziraju parovi visoke pouzdanosti bez uvod̄enja dodatne faze asocijacije, 2) softmax-
normalizirane vrijednosti Mahalanobisove udaljenosti sMhd , 3) sličnosti oblika, visine i ši-
rine, graničnih okvira sshape. Dodatkom vizualnih zančajki u boostanu sličnost osnovne
verziju BoostTrack algoritma performanse algoritma dodatno se povećaju performanse i
stabilnost praćenja. Konačna mjera sličnosti koja se koristi u asocijaciji tada je dana s
sboost = sbase + λIoU · cD · cT · IoU + λMhD · sMhD + λshape · sshape + λapp · sapp, gdje su cD i
cT pouzdanosti detekcije i putanje redom, a λIoU ,λMhD,λshape,λapp hiperparametri koji se
koriste za ponderiranje pojedinih komponenti.

2.4. Evaluacija MOT algoritama

Za efikasnu i objektivnu evaluaciju MOT algoritama potrebne su nam kvantitativne metrike
koje mjere sposobnost algoritama da u svakom okviru videozapisa pronad̄u i precizno loka-
liziraju sve objekte od interesa te konzistentno prate njihove putanje i jedinstvene identifika-
tore kroz vrijeme [153].

2.4.1. Metrike

Neka je O = {o1, . . . ,on} skup stvarnih putanja objekata, a H = {h1, . . . ,hm} skup hipoteza,
odnosno predvid̄enih putanja MOT algoritma. Stvarne putanje objekata i hipoteze repre-
zentirane su skupom detekcija Odet i Hdet u svakom okviru videozapisa. Svakoj detekciji
pridružen je jedinstveni identifikator za pojedini okvir, koji je konzistentan kroz vrijeme za
sve detekcije iz iste putanje. Detekciju objekta oi ili hipoteze h j u okviru t označavamo s o(t)i

odnosno h(t)j , pri čemu indeksi i i j predstavljaju odgovarajuće identifikatore detekcije.

Napomena. Pri praćenju objekata različitih klasa, svakoj putanji se dodatno pridjeljuje i

oznaka klase. Kako se u višeklasnom scenariju kod većine evaluacijskih metrika konačna

vrijednost dobivena izračunom srednje vrijednosti po pojedinim klasama [154], u nastavku

se zbog jednostavnosti pretpostavlja da se prate objekti samo jedne klase.

Pogreške algoritama za praćenje mogu se klasificirati u tri kategorije: 1) pogreške lo-
kalizacije koje nastaju kada predvid̄ene detekcije nedovoljno precizno odred̄uju položaje
stvarnih objekata, 2) pogreške detekcije koje se javljaju kada algoritam predvid̄a detekcije
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koje u stvarnosti ne postoje ili propušta detektirati stvarne objekte, 3) pogreške asocijacije
koje su rezultat pogrešnog povezivanja detekcija izmed̄u okvira videozapisa, bilo da algori-
tam isti identifikator dodjeljuje različitim stvarnim putanjama ili više različitih identifikatora
jednoj stvarnoj putanji.

MOTA, MOTP

Bernardin i suradnici u [153] predstavljaju dvije CLEAR MOT metrike: MOTA (engl.
Multi-Object Tracking Accuracy) metriku koja mjeri koliko dobro algoritam detektira
objekte i predvid̄a putanje i MOTP (engl. Multi-Object Tracking Precision) metriku koja
mjeri preciznost lokalizacije praćenih objekata. Unatoč svojim nedostacima, MOTA se ubrzo
afirmirala kao primarna metrika za evaluaciju MOT algoritama [154, 43]. Kako bi se mo-
gle izračunati vrijednosti MOTA i MOTP metrika, u svakom okviru videozapisa potrebno
je pridružiti stvarne detekcije objekata detekcijama hipoteza. Navedeno se radi na sljedeći
način:

(1) Ako je sličnost s izmed̄u detekcija o(t)i i h(t)j manja od unaprijed definirane granične

vrijednosti α, onda pridruživanje detekcija (o(t)i ,h(t)j ) nije valjano.1

(2) Sva pridruživanja detekcija (o(t)i ,h(t)j ) iz okvira t koja su valjana u okviru t +1, odnosno

za koja vrijedi s
(

o(t+1)
i ,h(t+1)

j

)
≥ α, ostaju očuvana i u okviru t +1.

(3) Detekcije koje su ostale neuparene nakon (2), pokušavaju se pridružiti jedne drugima na
način da se maksimizira njihova ukupna sličnost.2 Navedeno se može napraviti pomoću
mad̄arskog algoritma.

Neka je T P ⊆ Odet × Hdet skup svih pridruženih parova detekcija stvarnih objekata i
hipoteza, FP ⊆ Hdet skup lažno pozitivnih (preostalih, neuparenih) detekcija hipoteza te
FN ⊆ Odet skup lažno negativnih (preostalih, neuparenih) detekcija stvarnih objekata. Na-
dalje, neka IDSW označava broj zamjena identiteta (engl. IDentity SWitch) tj. koliko je
puta detekciji stvarnog objekta pridružena detekcija hipoteze čiji identifikator nije konzis-
tentan identifikatoru hipoteze koja je tom istom objektu pridružena u prethodnim okvirima.
Tada je

MOTA = 1− |FN|+ |FP|+ IDSW
|Odet |

, MOT P =
1

|T P| ∑
(o,h)∈T P

s(o,h). (2.17)

Prethodno definirani skupovi korišteni u izračunu CLEAR MOT metrika vizualizirani su na
Slici 2.6.

1U slučaju 2D praćenja kao mjera sličnosti s najčešće se koristi IoU odgovarajućih graničnih okvira [44].
2Sva pridruživanja moraju biti valjana.
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Slika 2.6: Vizualizacija CLEAR MOT koncepata. Na slici je prikazano deset uzastopnih
okvira praćenja. o1, o2 i o3 su stvarne putanje objekata, a h1, . . . ,h4 hipoteze algoritma.

HOTA

Budući da MOTA ne mjeri pogrešku lokalizacije te prenaglašava važnost detekcije nauštrb
asocijacije, u [154] je predložena nova HOTA (engl. Higher Order Tracking Accuracy)
metrika koja na uravnotežen način kombinira sve aspekte evaluacije algoritama za praćenje.

U definicijama skupova (2.18), (2.19) i (2.20) koje slijede, zbog preglednosti se izostavlja
t ′ ∈ {1, . . . ,N} gdje je N broj okvira danog videozapisa. Nadalje, ako je z skup, {x ∈ z | ψ}
označava skup {x | x ∈ z∧ψ}.

Za dani par pridruženih detekcija (o(t)i ,h(t)j )∈ T P skupovi točnih (T PA), lažno negativnih
(FNA) i lažno pozitivnih (FPA) asocijacija3 definiraju se na sljedeći način:

T PA
(
(o(t)i ,h(t)j )

)
=
{(

o(t
′)

i ,h(t
′)

j

)
∈ T P

}
, (2.18)

FNA
(
(o(t)i ,h(t)j )

)
=
{(

o(t
′)

i ,h(t
′)

k

)
∈ T P | k , j

}
∪
{

o(t
′)

i ∈ FN
}
, (2.19)

FPA
(
(o(t)i ,h(t)j )

)
=
{(

o(t
′)

k ,h(t
′)

j

)
∈ T P | k , i

}
∪
{

h(t
′)

j ∈ FP
}
. (2.20)

Definirani skupovi vizualno su pojašnjeni na Slici 2.7. Tada je HOTAα metrika za zadanu

3T PA (engl. True Positive Associations), FNA (engl. False Negative Associations), FPA (engl. False
Positive Associations).
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graničnu (lokalizacijsku) vrijednost α dana s

HOTAα =

√√√√ ∑
c∈T P

A (c)

|T P|+ |FN|+ |FP|
, A(c) =

|T PA(c)|
|T PA(c)|+ |FNA(c)|+ |FPA(c)|

, (2.21)

pri čemu T P, FN i FP mjere uspjeh, odnosno pogrešku detekcije, a T PA, FNA i FPA aso-
cijacije. Kako bi se dodatno uzeo i aspekt lokalizacije, HOTA se definira kao vrijednost
integrala po valjanim graničnim vrijednostima α, a u praksi se aproksimira aritmetičkom
sredinom vrijednosti HOTAα metrike za α ∈ {0.05,0.1, . . . ,0.95}:

HOTA =
∫ 1

0
HOTAα dα ≈ 1

19

0.95

∑
α=0.05

α+=0.05

HOTAα. (2.22)

Slika 2.7: HOTA: Ilustracija T PA, FPA i FNA skupova za odabrano ispravno pridruživanje
c ∈ T P predvid̄ene detekcije hipoteze h1 detekciji stvarne putanje o1 iz trenutka t +2. Skup

ispravnih pridruživanja T PA(c) predvid̄enih detekcija hipoteze h1 (manji crni kružići)
detekcijama odgovarajuće stvarne putanje (veći tamno plavi krugovi) označen je zelenom
bojom. Skup FPA(c), označen žutom bojom, sadrži predvid̄ene detekcije hipoteze h1 koje
nisu pridružene niti jednoj stvarnoj putanji ili su pridružene pogrešnoj putanji. Smed̄om
bojom označen skup FNA(c) obuhvaća detekcije stvarne putanje o1 kojima je pridružena

detekcija pogrešne hipoteze ili im uopće nije pridružena predvid̄ena detekcija. (Slika
preuzeta iz [154], uz izmjene.)
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IDF1

Za evaluaciju algoritama za praćenje uglavnom se istovremeno koristi više različitih me-
trika. Uz MOTA i HOTA metrike, često se koristi i IDF1 [155] metrika koja se fokusira na
točnost identifikacije objekata tokom praćenja. Dok MOTA i HOTA rade pridruživanja na
razini detekcija, IDF1 to čini na razini putanja. Definiraju se novi skupovi: IDT P (engl.
Identity True Positives) kao skup parova pridruženih detekcija (o(t)i ,h(t)j ) na preklapajućim
dijelovima putanja koje su pridružene, IDFN (engl. Identity False Negatives) i IDFP (engl.
Identity True Positives) kao skupovi preostalih stvarnih detekcije iz Odet te preostalih pre-
dvid̄enih detekcija iz Hdet koje se nalaze na putanjama koje nisu uspješno pridružene ili na
nepreklapajućim dijelovima pridruženih putanja. Tada je,

ID-Recall =
|IDT P|

|IDT P|+ |IDFN|
, ID-Precision =

|IDT P|
|IDT P|+ |IDFP|

, (2.23)

IDF1 =
|IDT P|

|IDT P|+0.5|IDFN|+0.5|IDFP|
. (2.24)

ID-Recall je udio stvarnih detekcija koje su ispravno identificirane, a ID-Precision udio
detekcija hipoteza koje su ispravno identificirane. IDF1 kombinira ID-Recall i ID-Precision

u jedan broj računajući njihovu harmonijsku sredinu [155]. IDF1 metrika dolazi s nekim
nedostacima uključujući prenaglašavanje asocijacija, neintuitivno i nemonotono ponašanje
u slučaju detekcija, izostanak evaluacije pogreške lokalizacije te ne razmatranje točnosti
asocijacije van preklapajućih dijelova pridruženih putanja [154].

Klasične metrike

Prethodno navedene metrike često se komplementiraju i rezultatima klasičnih metrika [142]
poput broja putanja stvarnih objekata koji je točno praćen u barem 80% okvira videozapisa
(MT - Mostly Tracked), broja putanja stvarnih objekata koji je točno praćen u manje od
20% okvira (ML - Mostly Lost), broja fragmenata (Frag), odnosno hipoteza koje pokrivaju
manje od 80% stvarne putanje objekta.

2.5. Ključni izazovi algoritama za praćenje više objekata

Algoritmi za praćenje više objekata suočavaju se s nizom izazova koji značajno mogu utje-
cati na njihovu učinkovitost i performanse. Ti izazovi uglavnom su povezani sa složenošću
zadatka detekcije objekata, problemom precizne asocijacije i održavanja konzistentnih iden-
titeta praćenih objekata, osobito u dinamičnim i složenim okruženjima, gdje su česta prekla-
panja, kolizije i interakcije med̄u objektima.
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Budući da se algoritmi za praćenje u velikoj mjeri oslanjaju na ulazne detekcije, njihove
performanse mogu značajno biti narušene pogreškama detektora, poput izostanka detekcije
objekta, lažno pozitivnih detekcija i nejasnih detekcija preklapajućih objekata [156, 62].
Poseban izazov predstavlja detekcija malih objekata koji na slici zauzimaju malu površinu,
bilo da su fizički veliki, ali se nalaze na velikim udaljenostima od kamere, ili su zapravo mali
[157, 158], kao i detekcija objekata zaklonjenih drugim objektima ili pozadinom. Slika 2.8
prikazuje nekoliko takvih primjera. Nadalje, velika varijabilnost i nepredvidivost stvarnih
okruženja, zajedno s promjenama kuta gledanja, osvjetljenja i pozadinskih uvjeta, dodatno
otežava zadatak detekcije i praćenja objekata [159].

Slika 2.8: Primjeri malih objekata (a) i zaklonjenih objekata (b) koje je potrebno detektirati
i pratiti.

Problem okluzije objekata predstavlja jedan od najvećih izazova u sustavima za praće-
nje. Već djelomična zaklonjenost uspješno detektiranog objekta otežava njegovo ispravno
povezivanje s odgovarajućom putanjom tijekom koraka asocijacije, budući da je kvaliteta
dobivenih vektora značajki upitna [22]. U slučaju potpune zaklonjenosti objekta, vizualna
informacija u potpunosti nedostaje, te se praćenje zaklonjenog objekta provodi isključivo
na temelju predvid̄anja algoritma poput Kalmanovog filtera. Što je period okluzije dulji, to
je procjena algoritma za predvid̄anje sljedećeg stanja manje pouzdana, te se često dogad̄a
da objekt nije ispravno povezan s izvornom putanjom nakon završetka okluzije. Vizualne
značajke objekta, koje obično imaju ključnu ulogu u reidentifikaciji [59], mogu se znatno
razlikovati u trenucima pred potpunu okluziju i nakon nje, kao što je ilustrirano na Slici 2.9.
Navedeno otežava ispravnu reidentifikaciju objekta te rezultira povećanim brojem zamjena
identiteta tijekom praćenja [160].

Osim zbog okluzija, pogreške u asocijaciji i zamjene identiteta mogu biti uzrokovane:
sličnim izgledom različitih objekata (Slika 2.10, b) što otežava razlikovanje njihovih vizual-
nih značajki [161, 162], značajnim varijacijama u izgledu istog objekta [81] (Slika 2.10, a),
te ne-linearnim i nepredvidivim kretanjima objekata [162, 81]. Pored navedenoga, većina
praktičnih primjena zahtijeva praćenje objekata u stvarnom vremenu, što implicira potrebu
za brzim algoritmima. S druge strane, ograničenja hardverskim resursima mogu značajno
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Slika 2.9: Plovilo netom prije potpune okluzije (a) i prilikom izlaska iz nje (b).

ograničiti kompleksnost i učinkovitost algoritama praćenja.

Slika 2.10: Varijacije u izgledu istog objekta (a) i sličan izgled različitih objekata (b).
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3. PREGLED DOSADAŠNJIH ISTRAŽIVANJA

Ovo poglavlje pruža sustavan pregled dosadašnjih istraživanja u području automatske detek-
cije i praćenja plovila s posebnim osvrtom na problem okluzije praćenih objekata. U prvom
dijelu (3.1) dan je pregled trenutno dostupnih skupova podataka koji se mogu koristiti prili-
kom treniranja i evaluacije modela za detekciju i praćenje plovila. Drugi dio (3.2) usmjeren
je na radove koji se bave implementacijom konkretnih algoritama za detekciju i praćenje
plovila. U trećem dijelu (3.3) razmatraju se istraživanja vezana za problem okluzije. Četvrti
i posljednji dio (3.4) posvećen je analizi dosadašnjih istraživanja te identifikaciji otvorenih
izazova u području automatske detekcije i praćenja plovila. U ovom dijelu razmatraju se
ključna ograničenja postojećih pristupa te se ukazuje na smjerove u kojima je potrebno us-
mjeriti budući istraživački rad.

3.1. Dostupni skupovi podataka

Za razvoj uspješnih i pouzdanih algoritama za detekciju i praćenje plovila nužni su visokok-
valitetni, označeni skupovi podataka koji obuhvaćaju svu raznolikost pomorskih okruženja.
Takvi podaci trebali bi uključivati različite tipove plovila, različite vremenske uvjete i uvjete
na moru, različite razine osvjetljenja, kao i različite kutove snimanja. Visokokvalitetni refe-
rentni skupovi podataka ne samo da omogućuju objektivnu usporedbu performansi različitih
metoda detekcije i praćenja, već potiču i daljnji napredak ovoga istraživačkog područja.

3.1.1. Općeniti skupovi podataka

Neki općenito poznati, javno dostupni skupovi podataka, poput CIFAR10 [163], Caltech-
256 [164] i ImageNet [125] skupova podataka za klasifikaciju, te PASCAL VOC [165] i MS
COCO [166] skupova podataka za detekciju objekata, sadrže primjere plovila. No, kategorije
plovila koje se javljaju u tim skupovima podataka ne obuhvaćaju svu njihovu raznolikost.
Nadalje, plovila u tim skupovima podataka obično zauzimaju veći dio slike te se često nalaze
u njenom samom središtu. Za učenje modela temeljenih na dubokom učenju, uz kvalitetu
samih primjera, bitna je i njihova kvantiteta. Navedeni skupovi podataka sadrže ograničen
broj primjera plovila. Nešto veći broj instanci plovila javlja se u MS COCO skupu podataka,
ali oni pripadaju općoj klasi „boat“, bez daljnje klasifikacije na potkategorije. U Tablici
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3.1 prikazan je broj klasa plovila, slika koje odgovaraju plovilima i odgovarajućih instanci
objekata navedenih skupova podataka.

Tablica 3.1: Opći skupovi podataka koji sadrže primjere plovila.

Skup podataka Klase plovila Slike Objekti Zadatak

CIFAR10 [163] 1 6000 – klasifikacija
Caltech-256 [164] 4 418 – klasifikacija
ImageNet [125] 6 525 613 klasifikacija/detekcija

PASCAL VOC [165] 1 363 791 detekcija
MS COCO [166] 1 3025 10759 detekcija

Standardni referentni skupovi podataka za evaluaciju i usporedbu algoritama praćenja
uglavnom su usredotočeni na praćenje pješaka. Primjerice, PETS2009 [29] skup podataka i
skupovi iz MOT izazova [30, 31, 32, 33]. Afirmirali su se i neki skupovi podataka fokusirani
na autonomnu vožnju [39, 34, 36, 38] koji dodatno obuhvaćaju i vozila na cestama. Med̄utim,

općeprihvaćen skup podataka specifično usmjeren na praćenje plovila još uvijek nedostaje.

3.1.2. Skupovi podataka iz pomorskih okruženja

Posljednjih godina predstavljeno je nekoliko skupova podataka iz pomorskih okruženja koji
sadrže označene slike i/ili videozapise snimljene RGB kamerama i usmjereni su na zadatke
klasifikacije, detekcije i praćenja plovila. Kronološki pregled takvih skupova podataka dan je
u Tablici 3.2, dok su u Tablici 3.3 navedene klase objekata koje se javljaju u tim skupovima.
U Tablici 3.2, simbol "✓" na kraju retka označava da je skup podataka javno dostupan, dok
"×" ukazuje na to da skup podataka nije dostupan javnosti.

VAIS [167], MARVEL [169] i Game of Deep Learning: Ship Dataset [171] skupovi po-
dataka fokus stavljaju na klasifikaciju različitih vrsta plovila. VAIS [167] obuhvaća uparene
RGB i infracrvene slike brodova prikupljene tijekom devet dana na šest različitih gatova.
Ukupno je 2865 slika (1623 RGB i 1242 infracrvenih), od kojih je 1088 parova. MARitime
VEsseLs (MARVEL) [169] skup podataka sadrži 2 milijuna slika 109 različitih tipova plo-
vila, prikupljenih sa Shipspotting1 web stranice. Korištenjem polu-nadzirane metode grupi-
ranja, konstruirano je 26 superklasa plovila. Game od Deep Learning: Ship Dataset [171]
je javno dostupan skup podataka predstavljen u sklopu Game of Deep Learning: Computer

Vision Hackathon-a održanog 2019. godine. Skup podataka sadrži 6252 označene slike za
treniranje i 2680 neoznačenih slika za konačnu evaluaciju iz skupa za testiranje.

Iako sadrži isključivo slike iz pomorskih okruženja, Harbor Surveillance [3] skup po-
dataka za detekciju ne radi distinkciju izmed̄u različitih kategorija plovila. Navedeni skup
podataka sadrži 48966 slika dobivenih iz videozapisa snimljenih tijekom šestomjesečnog
razdoblja s deset različitih pogleda na luku. Za svaki od pogleda, odabrano je i označeno

1https://www.shipspotting.com/
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Tablica 3.2: Pregled skupova podataka iz pomorskih okruženja.

Skup podataka Godina Slike Objekti Klase Rezolucija Zadaci

VAIS [167] 2015. 1623 – 6 5056×5056 klasifikacija ✓

SMD [168] 2017. 20367 157668 10 1920×1080 praćenje ✓

MARVEL [169] 2017.
2M

(140000)
–

109
(26)

razne
rezolucije

klasifikacija ✓

SeaShips [170] 2018. 31455 40077 6 1920×1080 detekcija ✓

Harbor
Surveillance [3]

2018. 48966 70513 1 2048×1536 detekcija ×

Game of DL:
ship dataset [171]

2019. 8932 – 5
razne

rezolucije
klasifikacija ✓

McShips [172] 2020. 14709 26259 13
razne

rezolucije
detekcija ✓

ABOships [1] 2021. 9880 41967 11 1920×720 detekcija ✓

GLSD [173] 2021. 152576 212357 13
razne

rezolucije
detekcija ×

LMD-TShip [174] 2021. 40240 N/A 5
razne

rezolucije
praćenje ✓

MarSyn [175] 2022. 25000 34000 6
1280×720
550×550

detekcija
segmentacija

×

SeaSAw [4] 2022. 1.9 M 14.6 M 12

7680×1408,
3840×2056,
3648×2052,
1920×1080

detekcija,
praćenje

×

SPSCD [176] 2023. 19337 27849 12 1920×1080 detekcija ✓

FVessel [177] 2023. 7625+ N/A 1 N/A
detekcija,
praćenje

✓

MVDD13 [178] 2024. 35474 40839 13 N/A detekcija ✓

više slika brodova, osiguravajući raznolikost pozadina i orijentacija. ABOships [1] skup po-
dataka obuhvaća 9880 slika koje prikazuju čak 41967 označenih objekata. Slike su dobivene
iz videozapisa snimljenih kamerom na plovilu za razgledavanje znamenitosti na ruti od grada
Turku do grada Rusissalo u Finskoj tijekom 13 dana u lipnju i srpnju 2018. godine. Ovaj
skup podataka obuhvaća različite vremenske uvjete tijekom dana, te uključuje slike otvore-
nog mora, luka i urbanih krajolika. U [175], autori u Blenderu generiraju sintetički MarSyn
skup podataka koji obuhvaća 25 različitih foto-realističnih videozapisa, pri čemu se svaki
sastoji od 1000 okvira. Cilj ovog skupa podataka je simulirati raznolike pomorske scenarije i
uvjete, uključujući varijacije vremenskih uvjeta, slike u blizini obale te refleksije na površini
vode. Plovila na slikama su različitih vrsta (teretni brodovi, vojni brodovi, ribarski čamci,
gliseri, splavi za spašavanje i dr.), duljina (od 3 m do 125 m), oblika i boja.
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Tablica 3.3: Klase plovila koje se javljaju u pojedinim skupovima podataka.

Skup podataka Broj klasa Klase

VAIS [167] 6 merchant, sailing, medium passenger,
medium other, tugboat, small boat

SMD [168] 10 ferry, buoy, vessel/ship, speed boat, boat, kayak,
sail boat, swimming person, flying bird/plane, other

MARVEL [169]
26

superklasa

container ship, bulk carrier, passengers ship,
ro-ro/passenger ship, ro-ro cargo, tug, vehicles carrier,

reefer, yacht, sailing vessel, heavy load carrier,
wood chips carrier, fire fighting vessel, patrol vessel,

platform, standby safety vassel, combat vessel, training
ship, icebreaker, replenishment vessel, tankers, fishing

vessels, supply vessels, carrier/floating, dredgers

SeaShips [170] 6 ore carrier, bulk cargo carrier, general cargo ship,
container ship, fishing boat, passenger ship

Harbor
Surveillance [3]

1 vessel

Game of DL:
ship dataset [171]

5 cargo, carrier, cruise, military, tankers

McShips [172] 13
aircraft carrier, submarine, landing ship, auxiliary ship,

destroyer, missile boat, speedboat, fishing boat, passenger
ship, container ship, tugboat, sailboat, support ship

ABOships [1] 11 boat, cargoship, cruiseship, ferry, militaryship, miscboat,
miscellaneous, motorboat, passengership, sailboat, seamark

GLSD [173] 13
sailing boat, fishing boat, warship, passenger ship, general

cargo ship, container ship, bulk cargo carrier, barge,
ore carrier, speed boat, canoe, oil carrier, tug

LMD-TShip [174] 5 cargo ships, fishing ships, passenger ships,
speed boats, unmanned ships

MarSyn [175] 6 cargo ships, military ships, fishing boats, speed boats,
rescue rafts, other

SeaSAw [4] 12
ship, recreational vessel, manual craft, sailing vessel,

work boat, fishing vessel, towing vessel, dredge,
wind turbine, marker, mooring buoy, miscellaneous

SPSCD [176] 12
small craft, small fishing boat, small passenger ship,

fishing trawler, large passenger ship, sailing boat,
speed craft, motorboat, pleasure yacht,

medium ferry, large ferry, high speed craft

FVessel [177] 1 vessel

MVDD13 [178] 13 cargo, passenger, cruise, bulker, tanker, sailingboat, tug,
fishing, drill, firefighting, containership, warship, submarine

Neki skupovi, poput GLSD [173] i McShips [172] skupova podataka, uključuju i primjere
prikupljene putem interneta. Većina slika u GLSD [173] skupu podataka prikupljena je s
interneta te obuhvaća različite svjetske luke, dok manji dio dolazi s nadzornog sustava Zhuhai
Hengqin New Area, u Kini. Ovaj skup podataka obuhvaća širok spektar slika koje sadrže
male objekte (manje od 32×32 piksela) i objekte srednje veličine (izmed̄u 32×32 i 96×96
piksela), obuhvaća takod̄er i neke neobične primjere i situacije, poput slika plovila u plamenu
te mozaike slika plovila. McShips [172] skup podataka obuhvaća 14709 slika podijeljenih
u skup za treniranje (10297) i skup za testiranje (4412). Slike sadrže šest kategorija ratnih
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i sedam kategorija civilnih brodova. Podaci su prikupljeni putem različitih izvora poput
web-tražilica, foruma, portala te videozapisa i nadzornih kamera, osiguravajući prisutnost
različitih pozadina, osvjetljenja te atmosferskih uvjeta.

Najrecentniji skup podataka, MVDD13 [178], razvijen je kao odgovor na nedostatak
javno dostupnih skupova podataka za razvoj modela vizualne percepcije autonomnih bespo-
sadnih površinskih vozila (engl. Unmanned Surface Vehicle, USV). On uključuje razne vrste
plovila te obuhvaća različita osvjetljenja i vremenske prilike, kao i primjere s okluzijama
plovila, kako bi se omogućila što bolja generalizacija detektora na stvarne uvjete pomorskih
okruženja. Za istraživanje u sklopu doktorskog rada značajan je i Split Port Ship Classifica-
tion Dataset (SPSCD) [176] koji obuhvaća slike splitske luke snimljene jednom kamerom u
razdoblju od veljače 2020. godine do prosinca 2022. godine, obuhvaćajući različita godišnja
doba, dijelove dana te vremenske uvjete. Ovaj skup podataka odražava specifičnosti medi-
teranskih luka, poput splitske luke, gdje pomorski promet varira od manjih i srednjih plovila
koja često nisu praćena uobičajenim sustavima za nadzor pomorskog prometa do velikih
putničkih trajekata i kruzera. Na prikupljenim slikama, znanstvenici s Pomorskog fakul-
teta u Splitu identificirali su i precizno označili dvanaest kategorija brodova. Med̄utim, ovaj
skup podataka prikladan je isključivo za detekciju i klasifikaciju plovila, ali ne omogućava
evaluaciju algoritama za praćenje.

Med̄u skupovima podataka navedenim u Tablici 3.2, samo su SMD [168], LMD-Tship

[174], SeaSAw [4] i FVessel [177] prikladni za evaluaciju algoritama za praćenje plovila.
Singapore Maritime Dataset (SMD) [168] sadrži 51 videozapis visoke rezolucije snim-
ljen na različitim lokacijama i rutama u vodama oko Singapura. Većina videozapisa (njih
40) snimljena je s obale kamerom postavljenom na fiksnom postolju, dok su ostali (njih 11)
snimljeni kamerom s broda u pokretu. Od deset klasa objekata, njih polovica ne pripada
kategorijama brodova. Nadalje, dostupne anotacije su u .mat formatu te zahtijevaju dodatno
procesiranje pri korištenju s popularnim bibliotekama dubokog učenja. LMD-TShip [174]
skup podataka obuhvaća 191 videozapis snimljen fiksnim kamerama postavljenim na dva
plovila te kamerama i mobilnim telefonima s obale. Podaci su podijeljeni u skup za tre-
niranje (152 videozapisa, 31527 okvira) i skup za testiranje (39 videozapisa, 8713 okvira).
Uključuje pet klasa plovila: cargo ships, fishing ships, passenger ships, speed boats, unman-

ned ships. Glavni nedostatak ovog skupa podataka je u tome što se uglavnom radi o jednom
plovilu po videozapisu. Najopsežniji skup podataka, Sea Situational Awareness (SeaSAw)
[4], sadrži podatke snimane kamerama s brodova u pokretu na nekoliko različitih geograf-
skih lokacija duž Istočne obale SAD-a, u Bostonskoj luci i Europi. Uključuje dvanaest klasa
objekata, od kojih njih pet ne odgovara brodovima (dredge, wind turbine, marker, mooring

buoy, miscellaneous). Iako je predstavljen u sklopu CVPR konferencije 2022. godine, ovaj
skup podataka još uvijek nije javno dostupan. FVessel [177] je javno dostupan skup po-
dataka koji kombinira videosnimke plovila s pripadajućim AIS zapisima te je namijenjen
evaluaciji algoritama za detekciju, praćenje i multimodalnu fuziju podataka. Sastoji se od
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26 videozapisa snimljenih fiksnom obalnom kamerom i 7625 dodatnih slika. Skup poda-
taka sadrži samo jednu klasu plovila te obuhvaća raznolike scenarije s primjerima okluzija
i promjenama osvjetljenja. Iako videozapisi FVessel skupa podataka traju ukupno više od
pet sati, prosječno se pojavljuje tek oko 0.35 plovila po minuti, odnosno jedno plovilo sva-
kih približno tri minute. Primjerice, u videozapisu duljine 8:08 min pojavljuju se samo dva
plovila, dok se u snimci trajanja 6:10 min javlja samo jedno.

3.2. Detekcija i praćenje plovila

Prvi dio ovog potpoglavlja donosi pregled radova posvećenih detekciji plovila na RGB sli-
kama. Kvaliteta detekcija izravno utječe na performanse algoritma za praćenje, posebno
u slučaju algoritama temeljenih na detekciji. Stoga je važno analizirati postojeće pristupe
detekciji kako bi se bolje razumjela njihova ograničenja i prednosti u kontekstu praćenja
plovila. U drugom dijelu fokus je na istraživanjima koja se bave samim praćenjem plovila iz
RGB videozapisa.

3.2.1. Radovi koji se bave isključivo detekcijom plovila

U razmatranim radovima koji se bave isključivo detekcijom plovila, od dvostupanjskih de-
tektora najzastupljeniji je Faster R-CNN detektor. Fu i suradnici [179] koriste model za
detekciju plovila baziran na Faster R-CNN detektoru koji upotrebljava ResNet [180] mrežu
za ekstrakciju značajki i metodu normalizacije mini-grupe [181]. Ovaj pristup kombinira
se s metodom selektivnog učenja na teškim primjerima kako bi se poboljšale performanse
detektora u složenim pomorskim okruženjima. Slično, Faster R-CNN s ResNet mrežom i
odabirom teških primjera, koristi se i u [182]. Qi i suradnici [183] predlažu modificiranu
verziju Faster R-CNN mreže, pri čemu se prije same detekcije provodi postupak smanje-
nja veličine slike i semantičkog sužavanja scene. Ova tehnika omogućuje isticanje ključnih
informacija i usmjeravanje pažnje prema ciljanim područjima gdje bi se plovila mogla nala-
ziti. Detekcija se zatim provodi Faster R-CNN mreže preoblikovane u hijerarhijsku mrežu
sužavanja, čime se smanjuje opseg pretrage detektora i poboljšava brzina detekcije.

Zahvaljujući svojoj sposobnosti brze i precizne detekcije objekata u stvarnom vremenu,
jednostupanjski YOLO detektor postao je vodeći izbor u primjenama za detekciju plovila,
što se jasno može vidjeti iz Tablice 3.4. U radu [184], ispituju se performanse YOLOv2
detektora za detekciju i klasifikaciju plovila, uspored̄ujući varijantu detektora predtreniranu
na PASCAL VOC skupu podataka s onom koja je trenirana na SMD skupu podataka. Za de-
tekciju objekata na površini mora, u radu [185] primjenjuje se unaprijed̄ena verzija YOLOv3
detektora, koja integrira DenseNet [186] model u Darknet-53 okosnicu, s ciljem poboljšanja
prilagodljivosti bespilotnih plovila tijekom dugotrajnih misija. Modificirana varijanta YO-
LOv5 detektora prilagod̄ena detekciji plovila na snimcima besposadnih površinskih plovila,
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predstavljena je u [187]. Ova inačica koristi K-means algoritam za optimizaciju referentnih
graničnih okvira te uključuje Ghost modul [188] i transformere. Shi i suradnici [19] takod̄er
predstavljaju model koji poboljšava YOLOv5 i nazivaju ga DrbLSK. Ovaj model integrira
modul za dinamički odabir jezgre u okosnici detektora, dilatiranu konvoluciju s velikom jez-
grom za smanjenje broja parametara te CIoU [189] funkciju gubitka za ubrzanu konvergen-
ciju. U [190], Cafaro i suradnici koriste YOLOv6-n model za detekciju brodova te dobivene
informacije komplementiraju s podacima radara/LIDAR-a i AIS prijemnika. Wu i suradnici
[191] predstavljaju poboljšanu varijantu YOLOv7 detektora koja koristi referentne granične
okvire koji su bolje prilagod̄eni različitim veličinama i oblicima brodova, integrira modul
za fuziju značajki različitih skala i agregacijsku mrežu za fuziju mapa značajki različitih ra-
zina. Unaprijed̄ena verzija YOLOv7-tiny detektora, nazvana YOLOv7-Ship, predložena je u
[192] za detekciju brodova u složenim pomorskim okruženjima. U usporedbi s baznom ver-
zijom, YOLOv7-Ship pokazuje bolju točnost u detekciji objekata različitih veličina, malih
i djelomično zaklonjenih objekata. Učinkovitije varijante YOLOv7-tiny detektora, koje po-
kušavaju riješiti izazov visokih računskih troškova postojećih modela za detekciju brodova
uz zadržavanje točnosti detekcije, predložene su i u radovima [193, 194]. Zhao i Song [195]
predstavljaju ekstenziju YOLOv8 detektora koja standardnu okosnicu za ekstrakciju značajki
zamjenjuje kombinacijom efikasnog MobileViTSF vizualnog transformera i MobileNetv2
[196] mreže, klasične konvolucijske blokove zamjenjuje GSConv blokovima [197] te koristi
redizajnirani C2f blok YOLOv8 mreže. YOLO-FE detektor, varijanta YOLOv8-n modela
prilagod̄ena za rad na krajnjim ured̄ajima, predstavljena je u [198]. Model integrira Fas-
terNet blok [199] radi smanjenja složenosti i povećanja brzine izračuna, te uključuje EMA
mehanizam pažnje [200] za poboljšano razumijevanje globalnog konteksta uz istovremeno
smanjenje računskih resursa. U radu [201], razvijena je nova ALF-YOLO arhitektura koja u
YOLOv8 integrira: asimptotsku mrežu značajki piramide (engl. Asymptotic Feature Pyramid

Network, AFPN) [202] kako bi se obogatila reprezentacija značajki korištenjem semantičkih
informacija s više razina i LSK (engl. Large Selective Kernel) mehanizam pozornosti koji
omogućuje detektoru da se više usredotoči na ključne značajke plovila, eliminirajući smet-
nje složenih okolišnih čimbenika. Učinkovitije varijante YOLOv8 detektora, EL-YOLO i
AFF-LightNet, predložene su u [203, 204]. EL-YOLO (Efficient Lightweight YOLO) [203]
koristi sveobuhvatnu analizu značajki okosnice modela kroz povećanu fuziju informacija,
novi AWIoU gubitak i tehniku pohlepnog uklanjanja nepotrebnih filtera s ciljem smanjenja
složenosti mreže. Yuan i suradnici [204] u AFF-LightNet modelu kombiniraju optimiziranu
operaciju konvolucije GhostConv [188] s iterativnim mehanizmom fuzije značajki temelje-
nom na mehanizmu pozornosti, te koriste SIoU [205] funkciju gubitka. S druge strane, Liu i
Zhu [206] koriste Res-YOLOX model koji u originalni YOLOX uvodi rezidualnu strukturu
i CIoU [189] funkciju gubitka.

Iako YOLO detektor prevladava u većini istraživanja, neki autori odlučuju se za alter-
nativne jednostupanjske detektore, poput CenterNet-a ili SSD-a. U članku autora Iancu i
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suradnici [207], evaluiraju performanse CenterNet detektora s različitim ekstraktorima zna-
čajki na prilagod̄enoj varijanti ABOships skupa podataka. Ova varijanta uključuje izbaci-
vanje objekata koji zauzimaju manje od 162 piksela, te agregaciju originalnih trinaest klasa
ABOship skupa podataka u četiri superklase radi ublažavanja neuravnoteženosti klasa. SSD
detektor, prilagod̄en opažanju ekstremnih varijacija u veličini i obliku brodova, koristi se za
detekciju brodova u Harbour Surveillance skupu podataka [3]. Li i suradnici [208] predlažu
algoritam za detekciju objekata na vodenoj površini na panoramskim slikama temeljen na
poboljšanoj varijanti SSD-a u kojoj je VGG16 [209] zamijenjena s ResNet-50 [180] mrežom
te je dodano pet slojeva za ekstrakciju značajki.

Studije koje uspored̄uju performanse različitih detektora provedene su u nekoliko
istraživačkih radova. U [210] je dana usporedba Faster R-CNN i Mask R-CNN detektora
(s ResNet101 okosnicom), koji su prethodno trenirani na skupovima podataka ImageNet i
MS COCO, primijenjenih na SMD skupu podataka. Autori rada [170] evaluiraju detektore
Fast R-CNN, Faster R-CNN s više različitih okosnica, SSD i YOLOv2 na SeaShips skupu
podataka. Usporedba Faster R-CNN, SSD, YOLOv2, YoLOv3 i YOLOv3SPP detektora
na McShips skupu podataka dana je u [172]. Detektori Faster R-CNN, SSD, EfficientDet
i RFCN su evaluirani na ABOships skupu podataka u [1]. Rad [173] daje usporedbu de-
vet različitih detektora, uključujući Faster R-CNN i RetinaNet detektore, na GLSD skupu
podataka. U radu [178], Wang i suradnici uspored̄uju performanse osam state-of-the-art de-
tektora (Faster R-CNN, SSD, YOLOv3, RetinaNet, YOLOv5s, FCOS, YOLOX, DETR) na
MVDD13 skupu podataka. U svom sljedećem istraživanju [211] razvijaju AodeMar, novi
detektor optimiziran za bolju detekciju zaklonjenih brodova. Njegova robusnost složenim
pomorskim uvjetima takod̄er je testirana na MVDD13 skupu podataka, uz usporedbu s de-
tektorima Faster R-CNN, SSD, YOLOv3-v5, YOLOv7, YOLOv8 i DETR. Zhao i suradnici
[212] uspored̄uju dvanaest različitih detektora, med̄u kojima su Faster R-CNN, SSD, Re-
tinaNet i razne varijante YOLO detektora, na privatnom skupu podataka koji sadrži slike
snimljene bespilotnim letjelicama. U radu [213], analiziraju se performanse tri različite vari-
jante YOLO detektora (YOLOv5-s, YOLOv7, YOLOv8-s) na zadatku detekcije brodova na
slikama snimljenim pri ulazu u marinu u Biogradu na Moru te na ulazu u Kanal sv. Ante u
Šibeniku. S druge strane, Heller i suradnici [214] istražuju primjenu dviju verzija YOLOv4
detektora za detekciju objekata na moru, uključujući i različite vrste plovila, na krajnjim
ured̄ajima ugradbenih sustava. U svom radu koriste kombinaciju SMD i SeaShips skupova
podataka, zajedno s MODD skupom podataka [215, 216] koji je posebno dizajniran za za-
datak segmentacije slike u tri prirodna područja (nebo, obalu i more), te detekcije velikih i
malih prepreka na morskoj površini.
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Tablica 3.4: Dosadašnja istraživanja vezana za detekciju plovila.

Rad Godina Detektor Podaci

Zwemer i sur. [3] 2018. modificirani SSD Harbour Surveillance

Lee i sur. [184] 2018. YOLOv2 PASCAL VOC, SMD

Fu i sur. [179] 2018. modificirani Faster R-CNN privatni podaci

Shao i sur. [170] 2018.
Fast R-CNN i Faster R-CNN

s više okosnica, SSD, YOLOv2
SeaShips

Zou i sur. [182] 2019. modificirani Faster R-CNN SMD

Qi i sur. [183] 2019. modificirani Faster R-CNN privatni podaci

Moosbauer i sur. [210] 2019. Faster R-CNN, Mask R-CNN SMD

Li i sur. [185] 2020. modificirani YOLOv3 USV privatni podaci

Zheng i sur. [172] 2020.
Faster R-CNN, SSD, YOLOv2,

YoLOv3 i YOLOv3SPP
McShips

Li i sur. [208] 2021. modificirani SSD
slike iz različitih izvora,

panoramske slike

Iancu i sur. [1] 2021.
Faster R-CNN, SSD,

EfficientDet, RFCN
ABOships

Shao i sur. [173] 2021.
devet različitih detektora

(Faster R-CNN, RetinaNet i dr.)
GLSD

Heller i sur. [214] 2022. YOLOv4, YOLOv4-tiny
kombinacija

SMD, SeaShips i MODD

Liu i Zhu [206] 2022. Res-YOLOX privatni podaci

Zhang i sur. [187] 2023. modificirani YOLOv5
Game of DL: ship dataset,

privatni USV podaci

Cafaro i sur. [190] 2023. YOLOv6-n
COCO, ABOships

privatni podaci

Wu i sur. [191] 2023. modificirani YOLOv7 SeaShips

Zhao i Song [195] 2023. modificirani YOLOv8 SeaShips

Iancu i sur. [207] 2023. CenterNet poboljšani ABOships

Cheng i sur. [198] 2023.
YOLO-FE baziran na

YOLOv8-n
privatni podaci

Nastavlja se na sljedećoj stranici
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Tablica 3.4 – Nastavak

Zhao i sur. [212] 2024.
dvanaest različitih detektora

(Faster R-CNN, SSD, RetinaNet,

razne varijante YOLO-a i dr.)

UAV privatni podaci

Wang i sur. [201] 2024.
ALF-YOLO

baziran na YOLOv8

SeaShips,

McShips

Jiang i sur. [193] 2024.
YOLOSeaShip baziran na

YOLOv7-tiny
SeaShips

Correira i sur. [213] 2024.
YOLOv5-s, YOLOv7

YOLOv8-s
privatni podaci

Yang i sur. [203] 2024. EL-YOLO baziran na YOLOv8 ABOships, SeaShips

Wang i sur. [178] 2024.
Faster R-CNN, SSD, YOLOv3,

RetinaNet, YOLOv5s, FCOS,

YOLOX, DETR

MVDD13

Wang i sur. [211] 2024. novi AodeMar detektor MVDD13

Jin i sur. [194] 2025.
YOLO-GCV baziran na

YOLOv7-tiny

SeaShips + dodatni

privatni i javni pdoaci

Yuan i sur. [204] 2025.
AFF-LightNet

baziran naYOLOv8
SeaShips

Shi i sur. [19] 2025.
DrbLSK

baziran naYOLOv5
ABOships

3.2.2. Praćenje plovila

Iako su detekcija i praćenje plovila usko povezani zadaci, istraživanja u području praćenja
plovila znatno zaostaju za onima koja se bave detekcijom. To potvrd̄uju bibliometrijski
podaci - od 2020. do danas (studeni, 2025.), Web of Science (WoS) baza podataka bilježi
2114 radova vezanih uz pojam "ship detection", dok je radova povezanih s pojmom "ship

tracking" svega 174. Sličan omjer prisutan je i u IEEE Xplore bazi (10257 prema 91). Kada
se dodatno filtriraju istraživanja koja ne koriste standardne RGB videozapise u kombinaciji s
metodama dubokog učenja za automatizirano praćenje, ionako malen broj relevantnih radova
dodatno se smanjuje.

Sažeti prikaz relevantnih istraživanja koja se bave praćenjem plovila na RGB videozapi-
sima dan je u Tablici 4.1. Zbog preglednosti, u stupcu "Praćenje" koristi se oznaka "*" kada
se u istraživanju koristi modifikacija ili proširenje navedenog algoritma praćenja. Primjerice,
StrongSORT* označava da se u znanstvenom radu koristi modificirana verzija StrongSORT-
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a, dok StrongSORT predstavlja originalnu implementaciju tog algoritma.
Iz Tablice 4.1 može se uočiti da recentni radovi iz područja praćenja plovila najčešće

koriste kombinaciju YOLO detektora i algoritama praćenja iz SORT familije, pri čemu je
najzastupljeniji DeepSORT algoritam. Modificiranu verziju YOLOv3 algoritma u kombi-
naciji s DeepSORT algoritmom koriste u [217] za detekciju i praćenje brodova u unutarnjim
plovnim putevima - na rijeci Yangtze u Kini. Uz optimizaciju referentnih graničnih ok-
vira, autori zamjenjuju sigmoidnu aktivacijsku funkciju klasifikatora softmax aktivacijom,
te predlažu korištenje poboljšane verzije NMS algoritma za učinkovitije uklanjanje redun-
dantnih graničnih okvira. U [218], fokus je na praćenju brodova za maglovita vremena.
Prvo se pomoću konvolucijske neuronske mreže iz svakog okvira videozapisa ukloni ma-
gla, a zatim se za detekciju i praćenje koriste YOLOv5 i DeepSORT. Poboljšane verzije
YOLOv5 i YOLOX algoritma u kombinaciji s originalnim DeepSORT algoritmom koriste
se za praćenje plovila i u radovima [219, 220]. S druge strane, modifikacije DeepSORT
algoritma implementirane su u [221, 222, 223]. Qi i suradnici [221] produljuju "vrijeme
čekanja" prije brisanja izgubljene putanje sa 30 na 300 uzastopnih okvira. Dodatno se, u
svakom koraku čekanja, površina posljednjeg graničnog okvira te putanje povećava za 10%,
sve do maksimalnih 2000 piksela, nakon čega se putanja briše. U [222], predlaže se kombi-
nacija poly-YOLO modela za detekciju i poboljšanog DeepSORT modula (engl. Enhanced

DeepSORT, EDS) za praćenje plovila. EDS modul koristi Gaussov filter za smanjenje šuma
i pozadinske interferencije, te primjenjuje normalizaciju histograma kako bi se uravnotežila
raspodjela kontrasta slike, čime se poboljšava praćenje plovila pri slaboj vidljivosti. Zhang
i suradnici [223] koriste optimizirani YOLOv7 detektor zajedno s varijantom DeepSORT
algoritma koja u finalnoj fazi pridruživanja umjesto IoU koristi DIoU [189] mjeru sličnosti.

U nekoliko radova koriste se i drugi popularni algoritmi temeljeni na detekciji, preciznije
ByteTrack i StrongSORT. Wu i suradnici [224] koriste poboljšani YOLOv8 u kombinaciji
sa StrongSort algoritmom za praćenje brodova na videozapisima snimljenim bespilotnom
letjelicom. U radu [225], Han i Jung predlažu varijantu StrongSORT algoritma nazvanu Sta-
bleSORT, koja učinkovito rješava izazove nepravilnih kretanja besposadnih plovila na kojima
je postavljena kamera, kao i nestabilnosti uzrokovane valovima i vjetrovima. StableSORT
koristi B-IoU [226] kako bi prevladao ograničenja standardne IoU metrike u dinamičnim
uvjetima, te prilagod̄eni NSA Kalmanov filter koji c u R̃t = (1− c)Rt postavlja na jedan
kada pouzdanost detekcije premašuje zadanu granicu. Navedenim se uklanja šum mjerenja
i maksimizira utjecaj detekcije visoke pouzdanosti prilikom ažuriranja stanja sustava u Kal-
manovom filteru. Hao i suradnici [227] koriste poboljšanu verziju YOLOv7-tiny detektora,
koja pokazuje bolje performanse u detekciji brodova na složenim pozadinama, različitim
skalama te u slučajevima djelomične zaklonjenosti. Detektor se kombinira s unaprijed̄enom
implementacijom StrongSORT algoritma, koji koristi OSNet [228] mrežu za ekstrakciju vi-
zualnih značajki, čime se smanjuje učestalost zamjena identiteta praćenih plovila. Za pra-
ćenje plovila u stvarnom vremenu, Xing et al. [229] sugeriraju korištenje YOLOv8-FAS
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algoritma, poboljšane verzije YOLOv8n algoritma dizajnirane za primjenu na ured̄ajima s
ograničenom memorijom i računalnim resursima, zajedno s ByteTrack algoritmom. Adap-
Track algoritam za praćenje plovila, koji se oslanja na FairMOT algoritam, opisan je u radu
[230]. AdapTrack algoritam implementira strategiju asocijacije ByteTrack algoritma. U
prvoj fazi, detekcije visoke pouzdanosti se pridružuju putanjama koristeći vizualne karakte-
ristike. Zatim, u drugoj fazi, preostale putanje se povezuju s detekcijama niske pouzdanosti
temeljem IoU vrijednosti. S druge strane, Zou i sur. [231] u obje faze asocijacije, pri povezi-
vanju s detekcijama visoke pouzdanosti i s onima niske pouzdanosti, primjenjuju jedinstvenu
mjeru sličnosti koja, uz IoU, uključuje i smjer kretanja plovila. U svom sljedećem radu, Zou
i sur. [232] takod̄er kombiniraju IoU sa smjerom kretanja plovila u koraku asocijacije, ali
ovog puta koriste VFE-YOLO detektor. Ova poboljšana varijanta YOLOX detektora koristi
višeskalne veze u arhitekturi izdvajanja značajki koje poboljšavaju prepoznavanje plovila.
Autori uvode i strukturni pozornostni modul koji smanjuje utjecaj redundantnih informacija
te povećava reprezentacijsku sposobnost modela.

Za razliku od pristupa koji se oslanjaju na popularne algoritme praćenja, u radovima
[233, 234, 235, 236] predstavljeni su alternativni pristupi praćenju plavila temeljeni na
detekciji. Wu i suradnici [233] koriste YOLOv3 i YOLOv5 detektore u kombinaciji s Ro-
DAN (Robust Deep Affinity Network) algoritmom praćenja koji, kroz tri različita modula,
objedinjuje informacije o tri ključna aspekta objekta: njegovoj veličini, regiji koju obuhvaća
i njegovom kretanju. Prvi modul spaja značajke različitih skala, čime omogućuje bogatiju i
semantički potpuniju reprezentaciju svakog plovila, smanjujući njegovu osjetljivost na vari-
jacije u veličini. Drugi modul poboljšava reprezentaciju značajki i rješava problem velikih
graničnih okvira koji obuhvaćaju pozadinu, osobito u slučaju plovila s dodacima poput jar-
bola ili drugih nadogradnji. Treći modul dodatno usmjerava i fino podešava preliminarne
rezultate praćenja, provjeravajući uspješno povezane, nove i izgubljene putanje, čime algori-
tam postaje manje ovisan o detektoru i otporniji na okluzije. Autori u [234] evaluiraju četiri
varijante YOLO algoritma za detekciju brodova na SMD skupu podataka te predlažu algo-
ritam za praćenje plovila na videozapisima snimljenim kamerom na brodu u pokretu koji
koristi pridruživanje temeljem IoU vrijednosti detekcija iz trenutnog okvira i praćenih obje-
kata i pridruživanje zasnovano na sličnosti ORB (oriented FAST and rotated BRIEF) značajki
i veličini graničnih okvira. Wang i suradnici [235] koriste YOLOv5 detektor u kombinaciji s
algoritmom praćenja koji integrira znanje da "objekti ne mogu iznenada nestati". U tu svrhu,
algoritam uključuje dodatnu granu kojoj je cilj locirati sve objekte iz prethodnog kadra u
trenutnom okviru videozapisa. Za to se koristi algoritam praćenja pojedinačnih objekata
temeljen na sijamskim neuronskim mrežama, koji računa sličnost izmed̄u objekta i poten-
cijalnih regija u trenutnom okviru gdje bi se objekt mogao nalaziti. Ako značajke iz novog
okvira značajno odstupaju od onih u posljednjih N okvira, objekt se smatra nestalim i prekida
se potraga za njim. U radu [236], koristi se jednostavan model praćenja nalik SORT algo-
ritmu uz dodatak kaskadnog pridruživanja. Algoritam praćenja temelji se na predvid̄anjima
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Kalmanovog filtera, te kaskadnom i IoU pridruživanju mad̄arskim algoritmom.
Nešto drugačiji pristupi praćenju, koji nadilaze klasične okvire popularnih algoritama,

predstavljeni su u [237, 238, 239]. Shan i suradnici [237] koriste SiamFPN model za pra-
ćenje brodova koji se sastoji od sijamske mreže s FPN podmrežama i tri mreže za predla-
ganje regija od interesa. Autori u [239] predstavljaju novi algoritam praćenja zasnovan na
mehanizmu dinamičke memorije i hijerarhijskom modelu koji je svjestan konteksta. Meha-
nizam dinamičke memorije pohranjuje značajke prethodnih okvira te ih dinamički integrira
s trenutnim značajkama kako bi se u model inkorporirao vremenski kontekst i med̄usobna
koreliranost okvira videozapisa. Hijerarhijski model koristi se za ekstrakciju kontekstualne
informacije na različitim skalama te globalnih i lokalnih informacija pomoću slojeva sažima-
nja i konvolucije s dilatacijom. Luo i suradnici [238] primjenjuju CO-Tracker [240], model
zasnovan na transformerima, u kombinaciji s LSTM i graf neuronskim mrežama s mehaniz-
mom pozornosti.

Tablica 3.5: Dosadašnja istraživanja vezana za praćenje plovila.

Rad Godina Detekcija Praćenje Podaci

Shan i sur.

[237]
2020.

SiamFPN model zasnovan na sijamskim

neuronskim mrežama
privatni podaci

Wu i sur.

[233]
2021.

YOLOv3 i

YOLOv5
RoDAN

SMD i privatni

HSD skup podataka

Jie i sur.

[217]
2021. poboljšani YOLOv3 DeepSORT privatni podaci

Li i sur.

[219]
2022. poboljšani YOLOv5 DeepSORT privatni podaci

Park i sur.

[234]
2022.

četiri varijante

YOLO-a

algoritram temeljen

na IoU i ORB_vel

pridruživanju

SMD

Xing i sur.

[229]
2023.

YOLOv8-FAS
zasnovan na

YOLOv8-n
ByteTrack privatni podaci

Chen i sur.

[230]
2023.

AdapTrack: algortiam zasnovan na FairMOT-u

s ByteTrack asocijacijom
SMD

Yang i sur.

[239]
2023.

Algoritam zasnovan na mehanizmu dinamičke

memorije i hijerarhijskom modelu
LMD-Tship

Zhou i sur.

[218]
2023. YOLOv5 DeepSORT privatni podaci

Nastavlja se na sljedećoj stranici
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Tablica 3.5 – Nastavak

Liu i Li

[220]
2023. poboljšani YOLOX DeepSORT LMD-TShip

Wang i sur.

[235]
2023. YOLOv5

algoritam

temeljen na znanju

SeaShips i

privatni podaci

Wu i sur.

[224]
2024. poboljšani YOLOv8 StrongSORT

PASCAL VOC i

privatni podaci

Luo i sur.

[238]
2024.

CO-Tracker zasnovan na transformerima

s LSTM graf neuronskim mrežama
privatni podaci

Qi i sur.

[221]
2024. poboljšani YOLOv5 DeepSORT* privatni podaci

Han i Jung

[225]
2024. YOLOv5 StrongSORT* privatni podaci

Cen i sur.

[236]
2024. poboljšani YOLOv7

praćenje temeljeno

na Kalmanovom filteru

SeaShips i

privatni podaci

Chen i sur.

[222]
2024. poly-YOLO DeepSORT* SMD

Zhang i sur.

[223]
2025. poboljšani YOLOv7 DeepSORT* privatni podaci

Hao i sur.

[227]
2025.

poboljšani

YOLOv7-tiny
StrongSORT* SMD

Zou i sur.

[231]
2025. YOLOX

asocijacija u dvije faze

(IoU + smjer kretanja)
FVessel

Zou i sur.

[232]
2025. VFE-YOLO VSATrack FVessel

3.3. Problem okluzije objekata

U posljednje vrijeme, objavljena je nekolicina radova koji istražuju kako poboljšati perfor-
manse algoritama praćenja tijekom okluzija objekata. Većina dosadašnjih istraživanja o ok-
luzijama fokusira se na praćenje pješaka i vozila, dok je područje praćenja plovila znatno
manje istraženo.
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3.3.1. Istraživanja problema okluzije općenito

Cao i suradnici [27] predstavljaju OC-SORT algoritam, unaprijed̄enu verziju klasičnog
SORT [58] algoritma koja je usmjerena na prevladavanje ograničenja vezanih za okluzije
i ne-linearna kretanja objekata. Njihov pristup uključuje dodatno ažuriranje parametara Kal-
manovog filtera kada se objekt ponovno pojavi nakon što je bio zaklonjen, čime se smanjuje
akumulirana pogreška. Ovo ažuriranje temelji se na virtualnoj putanji objekta generiranoj
korištenjem podataka o posljednjoj detekciji prije okluzije i prvoj nakon nje. Nadalje, mjera
sličnosti za asocijaciju putanja i detekcija uključuje i analizu konzistentnosti brzine kretanja
objekata, što dodatno doprinosi preciznosti praćenja. U [52], autori sugeriraju zamjenu Kal-
manovog filtera mrežom konvolucijskih propusnih povratnih ćelija (ConvGRU) kako bi se
riješio problem dugotrajnih okluzija u algoritmu zajedničke detekcije i praćenja. Ova mreža
omogućuje korištenje povijesnih prostorno-vremenskih informacija više objekata i učenje
dugoročnih ovisnosti.

Zhang i suradnici [160] predlažu strategiju asocijacije koja je robusnija na okluzije obje-
kata. Za razliku od DeepSORT [59] algoritma, zadržavaju granične okvire probnih putanja
čak i kada im tri uzastopna okvira nije pridružena detekcija, te ne brišu granične okvire pu-
tanja maksimalne starosti jer bi upravo ti okviri mogli odgovarati objektima koji su dulje
vrijeme zaklonjeni. Navedene granične okvire nazivaju graničnim okvirima visoke vrijed-
nosti. Nepridružene detekcije u koraku asocijacije pridružuju se graničnim okvirima visoke
vrijednosti i predvid̄enim graničnim okvirima, te se odabire ono pridruživanje koje ima ma-
nju kosinusnu udaljenost. Za predvid̄anje se koristi metoda najmanjih kvadrata ako je broj
okvira od kada je putanji pridružena detekcija manji od zadane granične vrijednosti, inače se
koristi Kalmanov filter.

S druge strane, ByteTrack [60] i BoT-SORT [61] algoritmi zadržavaju gotovo sve detek-
tirane granične okvire, uključujući i one s niskom pouzdanošću koji se obično filtriraju, jer
bi upravo ti granični okviri mogli sadržavati objekte koji su djelomično zaklonjeni. Pridruži-
vanje detekcija i putanja provodi se u dvije faze. U prvoj fazi, detekcije visoke pouzdanosti
pokušavaju se pridružiti postojećim putanjama korištenjem IoU i/ili vizualne sličnosti, dok se
u drugoj fazi asocijacije neuparenim putanjama pridružuju detektirani granični okviri niske
pouzdanosti koristeći isključivo IoU kao mjeru sličnosti, budući da vizualne značajke nisu
pouzdane u slučaju zaklonjenih objekata. Autori u [46] primjenjuju sličan pristup. Med̄utim,
oni u drugoj fazi asocijacije, u kojoj se detekcije niske pouzdanosti pridružuju preostalim
putanjama, koriste prostorno-vremenske značajke koje u obzir uzimaju odnos prostornog
položaja objekta i njegovog susjednog okruženja.

U radu [241], predlaže se unaprijed̄eni algoritam praćenja temeljen na regresiji koji
koristi regresijsku glavu detektora u dvije faze za predvid̄anje sljedeće pozicije praćenog
objekta. Osim regresije aktivnih putanja, provodi se i regresija neaktivnih putanja kojima
je regresijska vrijednost pala ispod zadane minimalne vrijednosti smin ili im je regresijom
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dobiveni granični okvir filtriran algoritmom ne-maksimalnog potiskivanja, što može biti po-
sljedica okluzije objekta. Pojam zaklonjena putanja odnosi se na aktivnu putanju koja je
potisnuta NMS algoritmom zbog preklapanja s drugom aktivnom zaklanjajućom putanjom.
Za nove detekcije koje nisu filtrirane aktivnim putanjama i NMS algoritmom, provjerava se
pripadaju li neaktivnim zaklonjenim putanjama koristeći udaljenost centra graničnog okvira
detekcije i predvid̄ene pozicije neaktivne putanje. Ako je ta udaljenost manja od zadane gra-
nične vrijednosti, neaktivna putanja se ponovno aktivira. Granična vrijednost koja se koristi
za aktivaciju putanje raste s povećanjem brzine putanje i broja okvira u kojima je putanja
bila neaktivna, budući da oba termina utječu na (ne)pouzdanost predvid̄ene pozicije.

Han i suradnici [242] predlažu inovativni LSTP modul za predvid̄anje sljedeće pozicije
objekta koji koristi kombinaciju prostornog i vremenskog Transformera, uz metodu asoci-
jacije koja prioritet daje aktivnim i zaklonjenim putanjama. Integrirajući prostorni koder
Transformera za česte interakcije objekata i vremenski koder Transformera za praćenje vre-
menskog kontinuiteta putanja, LSTP modul daje dugoročno bolja predvid̄anja za neaktivne
putanje. Osim predvid̄anja sljedeće pozicije objekta, LSTP modul takod̄er procjenjuje vidlji-
vost predvid̄enog graničnog okvira. Na temelju procijenjene vidljivosti, putanje se kategori-
ziraju kao zaklonjene (vidljivost < granične vrijednosti) i zaklanjajuće (vidljivost ≥ granične
vrijednosti). U koraku asocijacije, prioritet se daje pridruživanju aktivnih putanja nad ne-
aktivnima te zaklanjajućih putanja nad zaklonjenima. Nadalje, detektirani granični okviri
se razvrstavaju prema pouzdanosti, sprječavajući pridruživanje putanja visoke vidljivosti s
detektiranim graničnim okvirima niske pouzdanosti, koji obično sadrže zaklonjene objekte.

Zhou i suradnici [22] u svom algoritmu praćenja implementiraju modul zadužen za de-
tekciju okluzija, pri čemu objekt smatraju zaklonjenim ako se središte njegovog graničnog
okvira nalazi unutar nekog drugog graničnog okvira. Vizualne značajke objekata za koje je
detektirana okluzija se ne ažuriraju kako bi se izbjeglo njihovo „zagad̄enje“ tijekom kratko-
trajnih okluzija. U radu [243], autori predlažu adaptivni model koji kombinira predvid̄anja
dobivena modelima kratkoročnog i dugoročnog predvid̄anja kako bi se poboljšale perfor-
manse tijekom okluzija različitih trajanja. Model kratkoročnog predvid̄anja kombinira pre-
dvid̄anja dobivena temeljem vizualnih informacija i informacija o kretanju, dok se model
dugoročnog predvid̄anja oslanja na kubičnu splajn interpolaciju. Dendorfer i suradnici [23]
pokušavaju riješiti problem dugotrajnih okluzija predvid̄ajući buduće pozicije objekata ko-
risteći simulaciju scene iz ptičje perspektive i generativne suparničke neuronske mreže. U
[244], korak asocijacije koristi sekvencijalne značajke putanja koje integriraju informacije
iz više okvira videozapisa, što ih čini otpornijima na odred̄ene anomalije. Za ekstrakciju
sekvencijalnih značajki, koje istovremeno obuhvaćaju i prostornu i vremensku informaciju
o objektu, koristi se AP3D mreža. U radu [245], autori koriste rezultate dobivene modelom
segmentacije prepreka u sceni kako bi identificirali situacije u kojima je objekt zaklonjen
preprekom/pozadinom, dok se vizualni model temeljen na pažnji koristi za rješavanje pro-
blema okluzije objekta drugim objektom. PSMOT [246] algoritam koristi model zajedničke
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detekcije i ekstrakcije značajki s R-FCN detektorom u dvije faze. Za rješavanje problema
okluzije, PSMOT koristi model osjetljivosti na položaj. Dobivene klasifikacijske mape osjet-
ljive na položaj transformiraju se u binarne mape koje ukazuju na dijelove objekta koji su
zaklonjeni, omogućujući tako ignoriranje tih dijelova prilikom agregacije značajki. Na taj
način se efikasno smanjuju smetnje uzrokovane okluzijama.

3.3.2. Istraživanja vezana za okluzije plovila

Wang i suradnici, u svom radu [211], bave se problemom detekcije zaklonjenih plovila, te
predlažu novi model AodeMar, koji unutar YOLO okvira implementira mehanizam pažnje
s ciljem preciznijeg prepoznavanja zaklonjenih brodova. Dani model pomoću RCAC3 mo-
dula kombinira značajke niskog i visokog semantičkog značaja koristeći rezidualne veze,
čime omogućuje preciznije odred̄ivanje graničnih okvira zaklonjenih brodova. Nadalje, ko-
riste SP-STR modul za korelaciju semantike značajki na više razina koji kombinira SPP
[247] (Spatial Pyramid Pooling) i STR [248] blok s mehanizmom samopozornosti kako bi
se poboljšala sposobnost klasifikacije zaklonjenih brodova. No, ovaj rad je fokusiran isklju-
čivo na poboljšanje detekcije zaklonjenih plovila, ne i na druge aspekte praćenja objekta
tijekom okluzije. Hao i suradnici [227] koriste poboljšanu verziju YOLOv7-tiny detektora,
koja pokazuje bolje performanse u detekciji djelomično zaklonjenih plovila. Dodatno, in-
tegracijom OSNet [228] mreže za ekstrakciju vizualnih značajki u StrongSORT algoritam,
reducira se broj zamjena identiteta koje mogu biti uzrokovane okluzijama objekata.

Chen i suradnici u svom radu [249] iz 2020. godine obrad̄uju problem praćenja jednog,
unaprijed definiranog plovila za vrijeme okluzije, oslanjajući se pritom na klasične me-
tode kerneliziranih korelacijskih filtera. U recentnom radu iz 2025. [250] koristi se fuzija
informacija iz različitih izvora te OC-SORT algoritam praćenja kako bi se umanjio izazov
praćenja plovila za vrijeme okluzija i nelinearnih kretanja. Wang i sur. [235] u svoj algori-
tam praćenja integriraju spoznaju da objekti ne mogu iznenada nestati, te nastoje locirati sve
objekte koji su bili prisutni u prethodnom okviru. Ova metoda prepoznaje nestanak objekta,
odnosno detektira okluziju, kada se značajke u novom okviru značajno razlikuju od zna-
čajki objekta u prethodnih N okvira. Med̄utim, ne nudi rješenja za praćenje zaklonjenih
objekata, već jednostavno prekida pretragu za objektima koji su nestali.

U radovima [233, 221] problem lakšeg uparivanja zaklonjenih objekata s novim detekci-
jama pokušava se riješiti postupnim povećavanjem posljednjeg graničnog okvira izgubljenog
objekta. Wu i suradnici [233] dodatno provjeravaju inicijalne rezultate asocijacije kako bi
identificirali putanje koje su stvarno izgubljene. Tim se putanja posljednji granični okvir po-
većava kroz maksimalno 50 uzastopnih okvira, a ako nakon tog razdoblja ostanu neuparene,
onda se uklanjaju. S druge strane, u [221], neuparenim putanjama koje čekaju na pridru-
živanje u svakom koraku se granični okvir proširuje za 10% (s centrom kao središtem) do
maksimalnih 2000 piksela. Ako se neuparena putanja, koja je dosegla maksimalnu povr-
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šinu graničnog okvira, ne bude povezana s detekcijom, ona se briše. Takod̄er, maksimalno
vrijeme čekanja prije brisanja putanje produljuje se na 300 uzastopnih okvira. Zou i sur. u
radovima [231, 232] za rješavanje problema reidentifikacije plovila nakon okluzije predlažu
mjeru sličnosti koja, uz IoU, dodatno integrira i smjer gibanja plovila. Ovakav pristup rezul-
tira robusnijim praćenjem te smanjenim brojem zamjena identiteta uzrokovanih okluzijama
u scenarijima plovidbe unutarnjim vodnim putovima.

3.4. Analiza dosadašnjih istraživanja i otvoreni izazovi

Analiza do sada predstavljenih skupova podataka iz pomorskih okruženja ukazuje na zna-
čajan nedostatak javno dostupnih, označenih skupova podataka koji su prikladni za razvoj i
evaluaciju algoritama za praćenje plovila, a koji istovremeno adekvatno obuhvaćaju speci-
fičnosti pomorskih okruženja i raznolikosti plovila. Kod dostupnih skupova podataka ogra-
ničenje predstavljaju scene male gustoće plovila, koje nedovoljno odražavaju stvarne uvjete.
Takvi skupovi često sadrže tek nekoliko plovila u vidnom polju što otežava procjenu per-
formansi algoritama u dinamičnim scenarijama s visokom gustoćom prometa. Takod̄er, za
ispitivanje robusnosti algoritma na dugotrajne okluzije plovila, ključno je da skup podataka
sadrži različite primjere plovila koja su dugo vremena zaklonjena. Zbog navedenog, istra-
živanje u domeni praćenja plovila, osobito uz primjenu najnovijih modela dubokog učenja,
drastično zaostaje za mnogobrojnim istraživanjima u području praćenja pješaka, a situacija
je još nepovoljnija kada je riječ o praćenju plovila za vrijeme okluzija. Nadalje, većina is-
traživanja vezanih za praćenje plovila oslanja se na privatne podatke, što otežava objektivnu
usporedbu tih metoda. Stoga je neophodno razviti javno dostupne i reprezentativne skupove
podataka za praćenje plovila kako bi se potakao daljnji napredak ovog istraživačkog područja
i omogućila objektivna usporedba postojećih metoda.

Iako su detekcija i praćenje plovila komplementarni zadaci, istraživanja u području pra-
ćenja plovila znatno zaostaju za istraživanjima usmjerenima na njihovu detekciju. Neki
od mogućih razloga uključuju veći broj javno dostupnih skupova podataka za zadatak de-
tekcije, kao i jednostavniju implementaciju detekcije u odnosu na praćenje. Naime, pra-
ćenje plovila zahtijeva ne samo detekciju plovila, već i dodatne zadatke poput predvid̄a-
nja budućih pozicija praćenih plovila, ekstrakciju vizualnih značajki, preciznu identifika-
ciju plovila te održavanje konzistentnog identiteta tokom vremena. Mnogi radovi, poput
[217, 229, 224, 219, 220], usredotočeni su na poboljšanje detektora, dok za praćenje koriste
popularne algoritme poput DeepSORT-a, ByteTrack-a i StrongSORT-a u osnovnom obliku,
bez dodatnih prilagodbi ili poboljšanja. Iako kvaliteta detekcije značajno utječe na kvalitetu
praćenja, samo poboljšanje detektora ne rješava problem dugotrajnih okluzija. Stoga se po-
trebno fokusirati na moguća poboljšanja u ostalim koracima praćenja kako bi se potencijalno
riješio problem okluzija.

U nekoliko nedavno objavljenih radova razmatraju se i modifikacije popularnih algori-
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tama ili se predlažu neki novi algoritmi praćenja. Med̄utim, ovi radovi problem okluzije
plovila ili u potpunosti zanemaruju ili ga samo djelomično rješavaju. U radovima [211, 227]
fokus je na detekciji djelomično zaklonjenih objekata. Dok se [211] uopće ne razmatra pro-
blema praćenja za vrijeme okluzije niti reidentifikacije izgubljenih objekata, [227] uvodi
poboljšani model za ekstrakciju vizualnih značajki koji može smanjiti broj pogrešno dodije-
ljenih identiteta nakon perioda okluzije. Ipak, pritom treba uzeti u obzir da vizualne značajke
objekta koji tek izlazi iz okluzije često nisu reprezentativne, te ovaj pristup sam po sebi ne
rješava u potpunosti problem reidentifikacije objekta nakon okluzije. Wang i suradnici [235]
koriste metodu koja identificira nestanak objekta, ali umjesto pokušaja ponovnog pronala-
ska, putanja nestalog objekta se jednostavno briše. Pristup postepenog povećanja graničnog
okvira izgubljenog objekta s ciljem lakšeg budućeg uparivanja predstavljen je u [233, 221].
Ovaj pristup poprilično je ograničen. Pretjerano proširenje graničnog okvira može dovesti
do značajnih preklapanja s detekcijama drugih objekata, što otežava precizno pridruživanje
i može negativno utjecati na pouzdanost praćenja. Chen i suradnici [250] koriste OC-SORT
algoritam, koji uključuje dodatni korak ažuriranja kako bi smanjio pogreške Kalmanovog
filtera akumulirane tijekom okluzije. Med̄utim, ovaj algoritam pretpostavlja da će izgub-
ljeni objekt biti ponovno detektiran i ispravno reidentificiran kako bi se dodatno ažuriranje
izvršilo, što često nije slučaj, osobito pri duljim periodima okluzije.

Od istraživanja vezanih uz praćenje plovila, radovi [249, 232, 231] detaljnije se bave
problemom praćenja plovila tijekom okluzije. U radu [249] autori pritom koriste klasične
metode kerneliziranih korelacijskih filtera. Nadalje, fokus je na praćenju samo jednog, una-
prijed definiranog plovila, što predstavlja znatno uži obuhvat u odnosu na problem okluzija
koji se javlja pri praćenju većeg broja objekata.

Zou i sur. [232, 231] u svojim se radovima prvenstveno oslanjaju na prostorne i dina-
mičke informacije o kretanju plovila, koje u razdobljima duljih okluzija postaju sve nepo-
uzdanije. Budući da se pritom vizualne značajke plovila u potpunosti zanemaruju, model
ostaje osjetljiv na odstupanja u predvid̄enim gibanjima te na scenarije u kojima više plovila
pokazuje slične obrasce kretanja. Takav pristup ograničava pouzdanost reidentifikacije na-
kon okluzije i dodatno motivira integraciju komplementarnih vizualnih informacija kako bi
se postiglo stabilnije praćenje u složenim uvjetima.

Iz navedenog razmatranja evidentni su nedostaci u postojećim istraživanjima vezanim za
praćenje plovila, osobito u kontekstu okluzija. Radovi koji se konkretno bave okluzijama
objekata uglavnom su usmjereni na rješavanje problema okluzija u zadacima praćenja pje-
šaka, gdje je karakteristična česta interakcija med̄u objektima, nagli i nepredvidljivi obrasci
kretanja te češće kratkotrajne zaklonjenosti. Ideje koje su iznesene u radovima koji istražuju
okluzije pješaka mogu biti korisne i za rješavanje problema okluzija kod plovila. Med̄utim,
važno je uzeti u obzir specifične karakteristike pomorskih okruženja, plovila i njihovog kre-
tanja kako bi se razvili efikasniji algoritmi praćenja koji će općenito imati bolje performanse
i biti otporniji na dugotrajne okluzije. Dakle, postoji značajna potreba za daljnjim istraživa-
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njima koja bi mogla rezultirati naprednijim tehnikama i algoritmima, posebno usmjerenih na
rješavanje problema dugotrajnih okluzija plovila, čime bi se unaprijedila robusnost i učinko-
vitost sustava za praćenje plovila u složenim uvjetima.
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4. DIZAJN I IMPLEMENTACIJA SPLIT SHIP MOT
SKUPA PODATAKA

Pouzdanost i robusnost metoda za praćenje plovila uvelike ovise o kvaliteti i raznovrsnosti
podataka korištenih tijekom njihovog razvoja. Pregled ranije predstavljenih skupova poda-
taka iz pomorskih okruženja pokazuje značajan nedostatak javno dostupnih označenih sku-
pova podataka koji su pogodni za razvoj i evaluaciju algoritama praćenja plovila, a isto-
vremeno adekvatno obuhvaćaju sve specifičnosti pomorskih okruženja i raznolikosti plovila.
Dodatan problem predstavlja nedovoljna zastupljenost složenih scena koje uključuju istovre-
meno praćenje većeg broja plovila, njihovo med̄usobno mimoilaženje te situacije u kojima
dolazi do djelomičnih ili potpunih okluzija med̄u plovilima. Nadalje, za ispitivanje robus-
nosti algoritama u uvjetima dugotrajnih okluzija nužno je da skup podataka sadrži i primjere
plovila koja su dulje vrijeme zaklonjena. Bez takvih primjera nije moguće sveobuhvatno
procijeniti stabilnost sustava praćenja u realnim, dinamičnim uvjetima.

U okviru doktorske disertacije kreiran je novi Split Ship MOT (SSMOT) skup podataka
koji se sastoji od tri komplementarne komponente:

• Skupa za detekciju, koji omogućava razvoj i evaluaciju modela sposobnih za preciznu
lokalizaciju i klasifikaciju plovila u pojedinačnim okvirima videozapisa.

• Skupa za reidentifikaciju (ReID), koji sadrži slike istog plovila snimljenog u različi-
tim položajima i uvjetima, čime se omogućuje učenje diskriminativnih značajki nužnih
za ponovno prepoznavanje istog objekta nakon prekida praćenja zbog ograničenja de-
tektora ili uslijed okluzije.

• Skupa za praćenje, koji obuhvaća označene videozapise sa scenarijima dugotrajnih
okluzija i mimoilaženjima plovila, pružajući tako sveobuhvatan i realističan okvir za
procjenu performansi algoritama praćenja.

Ovakav višekomponentni dizajn osigurava veću fleksibilnost i raznolikost u odnosu na
standardne skupove podataka koji se temelje isključivo na označenim videozapisima. U tak-
vim skupovima, za treniranje detektora najčešće se koriste uzastopni okviri iz ograničenog
broja videozapisa koje karakterizira visoka redundancija [251, 252]. U kratkim vremenskim
razmacima javljaju se gotovo identični prikazi istih objekata, dok su uvjeti snimanja i osvjet-
ljenja unutar jednog videozapisa uglavnom konstantni. Kao rezultat, detektori trenirani na
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uzastopnim okvirima videozapisa imaju smanjenu sposobnost generalizacije na nove scene
i uvjete. Sličan problem javlja se i u kontekstu reidentifikacije [253, 254]. Kada se slike is-
tog plovila uzimaju iz susjednih okvira, dobivaju se gotovo identični vizualni prikazi koji ne
doprinose učenju diskriminativnih značajki potrebnih za prepoznavanje plovila u različitim
položajima, kutovima gledanja te pri promjenama vremenskih uvjeta i osvjetljenja.

Alternativni pristup u literaturi temelji se na evaluaciji praćenja na danim skupovima vi-
deozapisa, dok se detektor i ReID model treniraju i evaluiraju na zasebnim skupovima poda-
taka, posebno dizajniranim upravo za te zadatke [235, 224]. Ključni nedostatak ovog pristupa
jest neusklad̄enost distribucija podataka različitih podskupova, budući da vizualne karakte-
ristike objekata, uvjeti snimanja ili raspodjela scena u skupu za detekciju i ReID skupu često
ne odgovaraju onima u videozapisima korištenima za evaluaciju praćenja. Dodatno, klase
objekata u tim skupovima ne moraju nužno odgovarati klasama koje se javljaju u videozapi-
sima za evaluaciju praćenja. Zbog toga, u procesu integracije može doći do pada performansi
– detektor i ReID model uče reprezentacije koje nisu u potpunosti prilagod̄ene specifičnos-
tima scena u kojima se od njih očekuje zajedničko djelovanje. Takva neusklad̄enost otežava
i realnu procjenu sustava praćenja, jer rezultati evaluacije djelomično odražavaju različite
distribucije i klase podataka koji su se koristili za treniranje pojedinih komponenti.

Upravo navedene probleme adresira SSMOT skup podataka, u kojem su sve tri kompo-
nente – detekcija, reidentifikacija i praćenje – izvedene iz istog izvora i oblikovane prema
konzistentnim kriterijima. Na taj se način osigurava da vizualne karakteristike, uvjeti snima-
nja i distribucija scena budu usklad̄eni kroz sve zadatke, čime se uklanja problem neusklad̄e-
nosti odvojenih podskupova. Istodobno, način konstrukcije detekcijskog i ReID skupa sprje-
čava pojavu redundancije uzrokovane uzimanjem uzastopnih, gotovo identičnih kadrova, te
osigurava dovoljnu varijabilnost u prikazima istih objekata. Time detektor i ReID model uče
reprezentacije prilagod̄ene stvarnim izazovima praćenja, ali i dovoljno robusne da generali-
ziraju na različite uvjete snimanja. Evaluacija praćenja je pritom pouzdanija, budući da se
temelji na jedinstvenoj, konzistentnoj i raznolikoj podatkovnoj osnovi. Takav dizajn otvara
prostor za razvoj robusnijih sustava, što SSMOT skup podataka čini značajnim doprinosom
u području praćenja plovila.

4.1. Opis lokacije i tehničkih specifikacija kamere

Slike i videozapisi korišteni u SSMOT skupu podataka prikupljeni su u splitskoj luci, najve-
ćoj putničkoj luci u Hrvatskoj i jednoj od najprometnijih luka na Mediteranu [176]. Splitsku
luku karakterizira intenzivan i raznolik promet koji obuhvaća trajekte, katamarane, kruzere
te velik broj manjih brodica i jedrilica. Upravo zbog prisutnosti brojnih malih i srednjih plo-
vila koja nisu obuhvaćena standardnim sustavima za nadzor i upravljanje [255, 256], splitska
luka predstavlja izazovno okruženje za automatsko praćenje i analizu pomorskog prometa.

Za snimanje je korištena nadzorna kamera Dahua DH-TPC-PT8620A-T [257] oprem-
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ljena 1/1.9′′ Sony CMOS senzorom rezolucije 1944×1092 piksela (≈ 2 MP). Kamera omo-
gućuje snimanje u slabim svjetlosnim uvjetima (0.001 lux u boji) te posjeduje objektiv sa ža-
rišnom duljinom 6−180 mm, kutom vidnog polja 59◦−2.4◦ i 30× optičkim zumom. Kamera
je postavljena na zgradi na ulazu u luku, čime je omogućeno sustavno praćenje cjelokupnog
dolaznog i odlaznog pomorskog prometa u luci Split. Preciznije, kamera se nalazi na koor-
dinatama 43◦30′04′′ N i 16◦25′48′′ E, te je montirana na visini od približno 9 m iznad razine
mora. Pozicija kamere u luci prikazana je na Slici 4.1 crvenim krugom s ikonom kamere. Iz
kruga se protežu crvene linije koje približno označavaju stvarno vidno polje kamere.

Slika 4.1: Lokacija kamere u splitskoj luci. (Slika preuzeta iz [258], uz izmjene.)

4.2. Skup podataka za detekciju

Točna i precizna detekcija plovila ključna je za njihovo uspješno praćenje, budući da svaki
propust ili pogreška u ovom koraku izravno otežava kasniju reidentifikaciju i narušava kon-
zistentnost dodijeljenih identiteta kroz vrijeme. Kako bi se omogućilo učenje robusnih i uni-
verzalnih značajki, SSMOT detekcijski podskup obuhvaća raznolike primjere plovila snim-
ljene u različitim uvjetima, od različitih doba dana i razina osvjetljenja do promjenjivih oko-
lišnih uvjeta. Pri njegovoj izradi posebna je pažnja posvećena izbjegavanju redundantnih i
uniformnih vizualnih prikaza iz susjednih okvira videozapisa. Umjesto toga, odabrani su re-
prezentativni i med̄usobno raznoliki primjeri, čime se povećava varijabilnost skupa podataka
i omogućuje razvoj detektora s boljim generalizacijskim sposobnostima, koji su prikladni za
primjenu u stvarnim, dinamičnim uvjetima.
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4.2.1. Klasifikacija plovila

Prilikom definiranja kategorija plovila u SSMOT skupu podataka kao polazište je korištena
klasifikacija iz SPSCD skupa za detekciju koji je razvijen na Pomorskom fakultetu Sveuči-
lišta u Splitu uz sudjelovanje stručnjaka sa Zavoda za nautiku [176]. U tom skupu podataka
kategorije su odred̄ene prema tipu i duljini plovila, no u praksi duljinu plovila nije moguće
pouzdano razaznati iz samih snimaka. Stoga je u okviru SSMOT skupa naglasak stavljen na
vizualna obilježja plovila koja su lako prepoznatljiva iz videozapisa.

Na temelju ciljeva i svrhe SSMOT skupa podataka, kao i specifičnosti prometa u split-
skoj luci, definirano je ukupno 11 kategorija plovila. Kategorije Medium Ferry i Large Ferry

iz izvornog SPSCD skupa podataka objedinjene su u jedinstvenu kategoriju Ferry zbog jako
sličnih vizualnih obilježja. Detaljan pregled kategorija s pripadajućim opisima i karakteris-
tičnim vizualnim obilježjima dan je u Tablici 4.1, a na Slici 4.2 prikazani su reprezentativni
primjeri objekata iz svake kategorije.

Tablica 4.1: Pregled kategorija plovila korištenih u SSMOT detekcijskom podskupu.

ID Klasa Opis Vizualna obilježja Tipična namjena

0
Small

Craft

Vrlo mala plovila

namijenjena rekreaciji,

sportu ili osnovnoj obuci

Vrlo malih dimenzija,

izloženo sjedenje, npr.

male trening jedrilice,

jet ski, daske i kanui

Rekreativno veslanje,

jedriličarska obuka,

sportovi na vodi

1
Small

Fishing

Boat

Manje privatne i

ribarske brodice

skromnih performansi

Jednostavno plovilo

tradicionalnog izgleda,

otvoren trup, skromna

kabina i/ili tenda,

vanbrodski motor

Rekreativni ili

poluprofesionalni

ribolov, osobni

prijevoz lokalaca

2
Small

Passenger

Ship

Prijevoz ograničenog

broja putnika na kraćim

relacijama ili turističkim

vožnjama

Obično više paluba,

kabine s prozorima,

moguće otvorena

paluba, ponekad jedra

(turistički jedrenjaci)

Turistički izleti,

linijski prijevoz,

kratke kružne ture

3
Fishing

Trawler

Veći ribarski i

radni brodovi

Masivan radni trup,

oprema za koćarenje,

visoki pramac

Industrijski ribolov,

višednevne ribarske

ekspedicije

Nastavlja se na sljedećoj stranici
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Tablica 4.1 – Nastavak

4
Sailing

Boat

Plovila na jedra koja

koriste vjetar za

pogon uz mogući

pomoćni motor

Jarbol(i), jedra,

vitak trup srednje

do velike veličine

Rekreacijsko jedrenje,

regate, charter,

luksuzna plovidba

5
Speed

Craft

Brza, sportska

motorna plovila

Nizak, izdužen i

aerodinamičan trup,

otvorena ili

poluzatvorena kabina,

izražen sportski dizajn

Brza vožnja, glisiranje,

adrenalinske aktivnosti,

hitne intervencije,

brzi transferi

6 Motorboat

Višenamjenska

motorna plovila

srednje veličine

Stabilan, robustan trup,

zatvorena/poluzatvorena

kabina, udoban i

funkcionalan dizajn

Obiteljski izleti,

svakodnevna plovidba,

službene dužnosti

poput ophodnje

7
Pleasure

Yacht

Luksuzne privatne,

sportske i charter

jahte

Elegantna i moderna

silueta, višekatno

nadgrad̄e ili otvoreni

sportski dizajn

Privatna i VIP charter

plovidba, društveni

dogad̄aji, rekreacija

8 Ferry
Trajekti za

putnike i vozila

Višepalubno plovilo

s rampama

Redovni linijski promet

kopno-otok i med̄unaro-

dne linije preko mora

9
High

Speed

Craft

Brzi katamarani i

slična plovila

Moderan, aerodinamičan

dizajn, uska silueta, niski

trup, često katamaran

Brzi prijevoz putnika

na udaljene relacije

10
Large

Passenger

Ship

Veliki brodovi za

prijevoz većeg broja

putnika, opremljeni

za duža putovanja

Višekatna paluba,

velik trup, brojni

prozori/kabine

Kružna turistička

putovanja (kruzeri),

prekooceanske linije

4.2.2. Proces prikupljanja i anotacije slika

Za potrebe izrade detekcijskog podskupa korišteni su videozapisi snimljeni u razdoblju od
31. srpnja do 17. listopada 2023. godine, koje obuhvaća ljetne mjesece s povećanom promet-
nom aktivnošću u splitskoj luci, te dodatni zapisi iz svibnja 2024. godine. Iz njih je izdvojeno
ukupno 1040 slika. Dodatno je uključena i 2091 slika iz postojećeg SPSCD skupa podataka,
koji sadrži ukupno 19337 slika [176]. Pri odabiru slika iz SPSCD-a posebna je pažnja po-
svećena osiguravanju raznolikosti, budući da skup sadrži velik broj med̄usobno vrlo sličnih
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Slika 4.2: Reprezentativni primjeri objekata pojedinih klasa plovila.

kadrova dobivenih iz uzastopnih okvira videozapisa. Uključivanjem SPSCD slika dobivena
je i dodatna sezonska raznolikost, jer one obuhvaćaju i zimske mjesece koji nisu zastupljeni u
vlastitim snimkama. Postojeće anotacije odabranih SPSCD slika su prilagod̄ene i korigirane,
budući da su originalni granični okviri bili nedovoljno precizni (Slika 4.3), a sva plovila od
interesa nisu uvijek bila označena (Slika 4.4). Takod̄er, ispravljene su uočene nekonzistent-
nosti u oznakama istog plovila na različitim slikama.

Sve slike anotirane su koristeći Computer Vision Annotation Tool (CVAT) [259], stan-
dardni alat za označavanje objekata na slikama i u videozapisima. Korišten je YOLO format
oznaka [88], u kojem je svaki objekt na slici reprezentiran ured̄enom petorkom:

(IDclass ,
xc

wimg
,

yc

himg
,

w
wimg

,
h

himg
),
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Slika 4.3: Primjeri graničnih okvira koji obuhvaćaju nepotrebne dijelove pozadine.

Slika 4.4: Razlika u broju označenih plovila u izvornim SPSCD anotacijama i korigiranoj
verziji oznaka.

pri čemu IDclass predstavlja numeričku oznaku klase kojoj objekt pripada, xc i yc koordinate
središta graničnog okvira, w i h njegovu širinu i visinu, a wimg i himg širinu i visinu slike.
Označene slike podijeljene su na skup za treniranje i validaciju u omjeru 85:15. Od ukupno
3131 slike s 13680 objekata, na skup za treniranje otpada 2661 slika s 11539 objekata, dok
skup za validaciju čini 470 slika s 2141 objektom.

Kako bi se dodatno povećala raznolikost i proširio skup podataka za detekciju, primi-
jenjen je poluautomatizirani postupak. Na pripremljenim podacima treniran je YOLO11m
detektor tijekom 100 epoha, s veličinom miniserije (engl. mini-batch) 8. Iz videozapisa na-
mijenjenih za treniranje izdvojeno je 10000 slučajno odabranih okvira, na koje je primijenjen
prethodno istrenirani YOLO11m detektor iz epohe s najboljim performansama na skupu za
validaciju. Slike bez detektiranih objekata, kao i one s isključivo privezanim plovilima, uk-
lonjene su. Detekcije dobivene YOLO detektorom preostalih slika korištene su kao početna
točka za njihovu bržu i učinkovitiju anotaciju u CVAT-u. Naposljetku je dobiven prošireni
skup podataka, znatno veće raznolikosti, s 8981 slikom i 45830 objekata, koji je takod̄er
podijeljen na skup za treniranje i validaciju u omjeru 85:15. Detaljan pregled broja slika i
instanci objekata po klasama, u inicijalnoj i u proširenoj verziji skupa podataka, prikazan je
u Dodatku A.

Za potrebe konačne evaluacije, iz posebnih videozapisa koji nisu korišteni za generiranje
skupa za treniranje, izdvojeno je i označeno 848 slika koje čine nezavisni testni skup. Cje-
lokupni proces prikupljanja, filtriranja, anotacije i proširenja skupa za detekciju prikazan je
na Slici 4.5, koja ilustrira ključne korake u stvaranju SSMOT detekcijskog podskupa.
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Slika 4.5: Vizualni prikaz procesa stvaranja SSMOT podskupa za detekciju.

4.2.3. Karakteristike detekcijskog podskupa

Radi boljeg razumijevanja SSMOT detekcijskog skupa podataka, u nastavku je provedena
analiza njegovih osnovnih karakteristika poput broja instanci objekata po klasama, broja
objekata po slici te dimenzija i površina graničnih okvira. Osim numeričkih pokazatelja,
uključeni su i ilustrativni primjeri slika koji prikazuju različite uvjete snimanja, promjene
osvjetljenja, djelomične okluzije objekata i druge izazovne situacije.

Struktura SSMOT skupa podataka za detekciju

SSMOT skup podataka za detekciju sastoji se od ukupno 9827 slika u dvije rezolucije:
1920×1080 (9601 slika) i 1280×720 (226 slika). Skup je podijeljen na podskup za treni-
ranje (7632 slika), validaciju (1347 slika) i testiranje (848 slika), pri čemu testni podskup
čini nezavisnu cjelinu jer slike potječu iz videozapisa različitih od onih korištenih za treni-
ranje i validaciju. Struktura SSMOT skupa za detekciju, s detaljnim prikazom broja slika
na kojima se javljaju objekti pojedine klase i broja instanci po klasama u pojedinim pod-
skupovima i sveukupno, dana je u Tablici 4.2. U retku "Ukupno" Tablice 4.2 u stupcima
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"Slike" naveden je ukupan broj slika u pojedinom skupu podataka 1. Slika 4.6 dodatno ilus-
trira broj instanci po klasama u SSMOT skupu za detekciju, s naznačenim udjelom pojedinih
podskupova.

Tablica 4.2: Broj slika i instanci objekata po klasama u SSMOT detekcijskom podskupu.

Klasa Train Val Test Sveukupno
Slike Inst. Slike Inst. Slike Inst. Slike Inst.

Small craft 517 1417 90 199 92 269 699 1885
Small Fishing Boat 1023 1101 168 186 83 85 1274 1372
Small Passenger Ship 2755 3496 483 613 257 301 3495 4410
Fishing Trawler 3751 4098 652 714 572 589 4975 5401
Large Passenger Ship 3360 4150 604 741 497 607 4461 5498
Sailing Boat 2139 3261 390 612 262 333 2791 4206
Speed Craft 3203 4501 540 769 410 567 4153 5837
Motorboat 1780 1902 320 343 186 210 2286 2455
Pleasure Yacht 1282 1383 225 243 136 151 1643 1777
Ferry 7088 12351 1242 2133 793 1315 9123 15799
High-speed craft 1274 1357 233 260 170 180 1677 1797

Ukupno 7632 39017 1347 6813 848 4607 9827 50437

Vidljivo je da klasa Ferry značajno dominira po broju instanci, što se može objasniti či-
njenicom da se trajekti često pojavljuju privezani u luci te su stoga prisutni na velikom broju
slika. Sličan razlog djelomično objašnjava i povećan broj instanci klasa Large Passenger

Ship i Fishing Trawler, budući da se i oni nerijetko pojavljuju u kadru dok su privezani.
Klasa Speed Craft obuhvaća objekte koji, za razliku od prethodno navedenih, nisu privezani
već se uglavnom pojavljuju u pokretu, no unatoč tome bilježe velik broj instanci. To se može
objasniti njihovom čestom prisutnošću u stvarnim scenama te izraženom intra-klasnom va-
rijabilnošću: ova klasa obuhvaća širok raspon modela koji se razlikuju po obliku, boji, vrsti
pogona i po materijalu izrade (npr. guma, plastika, aluminij).

Broj objekata po slici

Kako bi se dobio sveobuhvatan uvid u strukturu podataka, analize koje slijede provode se nad
cjelokupnim detekcijskim skupom, objedinjavanjem podskupova za treniranje, validaciju i
testiranje.

Na Slici 4.7 prikazana je distribucija broja objekata po slici koristeći dvije komple-
mentarne vizualizacije. Gornji stupčasti dijagram (a) prikazuje apsolutan broj slika koje
sadrže odred̄enu vrijednost broja objekata, uz dodatno naznačene relativne udjele. Donji pri-
kaz (b) predstavlja boxplot dijagram koji naglašava centralne tendencije i raspon vrijednosti

1Vrijednost u retku "Ukupno" za stupce "Slike" ne mora odgovarati zbroju vrijednosti tog stupca po kla-
sama, budući da se na istoj slici može nalaziti više različitih objekata.
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Slika 4.6: Distribucija broja objekata pojedinih klasa u SSMOT skupu za detekciju.

u danim podacima. Analiza distribucije pokazuje da se najveći udio slika u SSMOT detekcij-
skom skupu podataka (57.7%) nalazi u rasponu od četiri do šest objekata po slici. Nasuprot
tome, slike s manje od dva objekta te one s više od deset objekata javljaju se znatno rjed̄e,
pri čemu njihov udio ne prelazi 5% ukupnog skupa. Slike s 10 objekata i više, njih 299
(3%), detektirane su kao skup outliera što ukazuje na to da se takvi primjeri pojavljuju rjed̄e
i odstupaju od dominantnog obrasca distribucije. Čak 59.8% slika sadrži 5 ili više objekata,
a njih 22.3% 7 objekata ili više. U skupu podataka nema slika bez objekata; na svakoj slici
prisutan je barem jedan brod, bilo privezan u luci ili u pokretu.

Usporedba distribucije broja objekata po slici u SSMOT i SPSCD skupovima podataka
pokazuje na njihove značajne razlike. Više od polovice slika (55.2%) SPSCD skupa podataka
sadrži samo jedan objekt, dok dodatnih 11.7% ne sadrži niti jedan objekt, što znači da gotovo
dvije trećine skupa (66.9%) obuhvaća slike s najviše jednim objektom. Slike s dva broda
čine 17.7%, a s tri broda 10.7% ukupnog skupa. Udio slika sa složenijim scenama, tj. s
četiri ili više brodova, iznosi svega 4.6%, a tek je 26 slika s maksimalnim brojem objekata 7
(0.1%). Važno je istaknuti da u SPSCD skupu podataka nisu označavana privezana plovila
unutar luke, već su uglavnom anotirana plovila u pokretu, a ona malo udaljenija često su
izostavljena. Med̄utim, broj takvih neoznačenih plovila u SPSCD-u nije toliko velik da bi
bio jedini uzrok velike razlike u distribuciji broja objekata po slici SPSCD i SSMOT skupa
podataka. SSMOT se ističe znatno većim brojem objekata po slici te složenijim scenama,
što ga čini pogodnijim za razvoj i evaluaciju detekcijskih modela u realnim uvjetima.

Za razliku od SPSCD skupa podataka, SSMOT skup obuhvaća i sva vidljiva plovila –
ona u pokretu, kao i ona koja su privezana. Budući da vizualna obilježja plovila ostaju
slična neovisno o tome kreću li se ili miruju, njihovo selektivno označavanje ne utječe samo
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Slika 4.7: Distribucija broja objekata po slici u SSMOT detekcijskom skupu podataka
prikazana stupčastim dijagramom (a) i boxplotom (b).

na smanjenje prosječnog broja objekata po slici, već može i zbunjivati detekcijske modele.
Naime, kada je plovilo sa sličnim vizualnim karakteristikama u jednoj slici označeno, a u
drugoj ne, otežava se proces učenja jasnih i konzistentnih značajki. Prednost SSMOT skupa
podataka je u dosljednom označavanju svih plovila, koje čini osnovu za treniranje stabilnih
modela sposobnih za pouzdanu detekciju u praktičnim uvjetima.

Veličine i proporcije objekata

Analiza veličina i proporcija označenih objekata pruža važan uvid u karakteristike samog
skupa podataka. Površine graničnih okvira otkrivaju koliki dio slike plovila obično zauzi-
maju, dok omjer stranica graničnog okvira (engl. aspect ratio) daje uvid u karakteristične
oblike plovila koja se javljaju. Analiza je provedena po klasama kako bi se lakše uočili
specifični obrasci karakteristični za pojedine kategorije plovila.
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Na Slici 4.8 prikazana je distribucija površina graničnih okvira po klasama brodova,
izraženih kao postotak ukupne površine slike. Klase poput Small craft, Small Fishing Boat,
Speed Craft i Motorboat obuhvaćaju male objekte koji obično zauzimaju vrlo mali udio slike
(treći kvartil Q3 za sve klase manji od 0.45%), što je i očekivano budući da se tu generalno
radi o manjim plovilima. S druge strane, kategorije koje sadrže veća plovila poput velikih
trajekata (Ferry) i kruzera (Large Passenger Ship) imaju jako širok raspon vrijednosti, od
primjera kada se javljaju kao dominantni objekti u kadru zauzimajući iznimno velik dio slike
(preko 30%) do situacija kada su privezani ili se nalaze u daljini pa su im površine znatno
manje. Navedeno je ilustrirano primjerom slike (na Slici 4.8) na kojoj se nalaze dva granična
okvira klase Ferry bitno različitih površina.

Slika 4.8: Box-plot dijagrami površina graničnih okvira po klasama.

S druge strane, Slika 4.9 pruža pregled raspodjele omjera stranica (širine i visine) gra-
ničnih okvira po klasama plovila. Može se uočiti da pojedine klase imaju karakteristične
proporcije. Primjerice, granični okviri plovila klase Sailing Boat su uvijek vertikalno iz-
duženi zbog karakterističnog jarbola (Q3 = 0.39), dok kod klase Speed Craft prevladavaju
horizontalno izduženi granični okviri (Q1 = 1.31). Vidljiva je i varijabilnost oblika graničnih
okvira unutar pojedinih klasa, koja proizlazi iz raznolikosti izgleda plovila u različitim po-
ložajima, kao i heterogenosti plovila unutar same kategorije. Primjerice, unutar klase Small

Craft prevladavaju male trening jedrilice čiji jarboli uzrokuju okomito izdužene okvire, dok
se istodobno pojavljuju i drugi tipovi plovila, poput kanua, kod kojih su granični okviri iz-
razito horizontalno izduženi. Slična raznolikost (Q1 = 0.66, Q3 = 1.25) prisutna je i u klasi
Small Passenger Ship, koja obuhvaća širok spektar putničkih brodova, od manjih plovila do
većih turističkih jedrenjaka i brodova namijenjenih kraćim kružnim turama. Kod klasa poput
Ferry, Large Passenger Ship i Fishing Trawler učestalo se pojavljuju primjerci privezani uz
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obalu, zbog čega je prisutan znatan broj graničnih okvira s omjerom stranica manjim od 1.

Slika 4.9: Box-plot dijagram omjera širine i visine graničnih okvira po klasama.

Velika raznolikost veličina objekata, kako med̄u klasama tako i unutar iste klase, zajedno
s varijabilnošću njihovih proporcija, čini skup podataka reprezentativnijim, ali istodobno
predstavlja i veći izazov za detekcijske modele koji moraju jednako pouzdano prepoznavati
vrlo male i izrazito velike objekte različitih oblika.

Vizualna raznolikost i izazovni scenariji

Kako bi se dodatno prikazala raznolikost i složenost SSMOT skupa podataka za detekciju,
u nastavku su prikazani reprezentativni primjeri slika koje obuhvaćaju različite vremenske
i morske uvjete, razine osvijetljenosti te situacije djelomične zaklonjenosti i med̄usobnog
mimoilaženja brodova. Uvrštavanjem ovakvih primjera osigurava se da detekcijski model ne
uči isključivo iz idealnih situacija, nego i iz složenih scenarija. Time se razvija sposobnost
generalizacije detekcijskog modela i njegova otpornost na različite uvjete i okolnosti koje
odstupaju od uobičajenih, poput maglovita vremena ili djelomične zaklonjenosti plovila koje
je potrebno detektirati.

Primjeri prikazani na Slici 4.10 ukazuju na to da skup podataka SSMOT obuhvaća raz-
nolike vremenske i okolišne uvjete. Uključene su scene snimljene pri sunčanom i oblačnom
vremenu, kao i u uvjetima magle i kiše, uz različite razine osvijetljenosti – od ranih jutarnjih
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sati, preko dnevnih i sumračnih scena, do večernjih uvjeta. Na pojedinim primjerima uočljivi
su i valovi te odsjaji sunčeve svjetlosti na površini mora.

Slika 4.10: Primjeri različitih uvjeta i razina osvijetljenosti u SSMOT skupu podataka za
detekciju.

Na Slici 4.11 prikazane su situacije djelomične zaklonjenosti i med̄usobnog mimoilaže-
nja plovila, koje dodatno doprinose složenosti skupa podataka. Ove raznolikosti čine skup
podataka zahtjevnijim, ali istovremeno omogućuju treniranje detekcijskih modela veće ro-
busnosti koji će biti pouzdani i u stvarnim uvjetima primjene.

Slika 4.11: Primjeri složenijih scena s djelomično zaklonjenim plovilima koja se mimoilaze.

4.3. ReID skup podataka

Reidentifikacija plovila čini osnovu naprednih sustava za praćenje, budući da omogućava
prepoznavanje i povezivanje istog objekta kroz vremenski razdvojene okvire videozapisa,
čak i u situacijama privremenog izostanka detekcije uslijed pogreške detektora ili okluzije.
Za razliku od skupa za detekciju, koji se sastoji od pojedinačnih okvira videozapisa s označe-
nim lokacijama i klasama plovila, skup podataka za reidentifikaciju sadrži slike istih plovila
prikazanih u različitim okolnostima - pri promjenama položaja, udaljenosti od kamere, uvjeta
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osvjetljenja i snimanja. Ovakva struktura podataka omogućuje učenje diskriminativnih vizu-
alnih obilježja plovila, koja ostaju relativno nepromijenjena unatoč varijacijama u njihovom
izgledu i vanjskim okolnostima snimanja.

4.3.1. Osnovne karakteristike

SSMOT skup podataka za reidentifikaciju, razvijen za specifičan problem praćenja plovila u
splitskoj luci, obuhvaća ukupno 281 različito plovilo (identitet). Za svako plovilo prikup-
ljeno je najmanje osam slika koje ga prikazuju u različitim položajima i/ili su snimljene u
različitim vremenskim razdobljima. Kod nekih plovila, poput onih na redovnim trajektnim
i turističkim linijama, bilo je moguće prikupiti uzorke snimljene u različitim vremenskim
razdobljima i pod različitim uvjetima. Nasuprot tome, kod manjih privatnih brodica takav
pristup nije bio uvijek izvediv, pa su varijacije uglavnom ostvarene primjerima plovila u
različitim položajima. Slika 4.12 prikazuje uzorke slika šest različitih identiteta iz SSMOT
skupa za reidentifikaciju.

Slika 4.12: Primjeri slika šest identiteta iz SSMOT ReID skupa podataka.

Na Slici 4.13 prikazan je kružni dijagram koji ilustrira raspodjelu pojedinih klasa plovila
u SSMOT skupu podataka za reidentifikaciju. Nasuprot detekcijskom skupu podataka, u
kojem prevladavaju klase poput Ferry, čija je visoka zastupljenost rezultat same strukture
prometa u splitskoj luci - učestalog prometovanja redovnih trajektnih linija te čestog boravka
trajekata privezanih u luci - u ReID skupu podataka zastupljenije su klase poput Speed Craft,
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Small Passenger Ship i Motorboat, koje karakterizira izraženija unutar-klasna varijabilnost.
Veća zastupljenost takvih klasa u ReID skupu podataka je iznimno važna jer omogućuje
modelu da razlikuje pojedinačna plovila iste kategorije koja dijele slična vizualna obilježja,
što predstavlja temelj za pouzdano očuvanje identiteta plovila tijekom praćenja.

Slika 4.13: Kružni dijagram udjela pojedinih klasa u identitetima SSMOT ReID skupa
podataka.

Od ukupno 281 identiteta u ReID skupu podataka, njih 61 je izdvojeno za testiranje,
dok je preostalih 220 namijenjeno treniranju reidentifikacijskih modela. U oba podskupa
zastupljene su sve klase plovila, što je ilustrirano na Slici 4.14.

Slika 4.14: Distribucija broja identiteta SSMOT ReID skupa podataka po klasama s
podjelom na skup za treniranje i testiranje.
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4.3.2. Struktura ReID skupa podataka

SSMOT skup podataka za reidentifikaciju podijeljen je na tri particije standardne za ReID
skupove podataka [260, 261, 262, 263], a to su: skup za učenje, skup upita i galerija.

Skup za učenje (engl. train set) koristi se za treniranje ReID modela i sadrži slike
identiteta namijenjene isključivo procesu učenja. S druge strane, za evaluaciju performansi
dobivenih modela, koriste se skup upita i galerija. Skup upita (engl. query set) najčešće
se sastoji od jedne do dvije slike za svaki testni identitet. Cilj ReID modela je za svaku
sliku iz skupa upita pronaći odgovarajuće slike istog identiteta unutar galerije. Galerija
(engl. gallery) predstavlja pretraživački prostor slika u kojem se traže pozitivni primjeri za
zadane upite. Ona sadrži veći broj slika svakog testnog identiteta, kao i distraktore - vizualno
slične primjere identiteta koji se ne nalaze med̄u upitima. Dodavanjem distraktora u galeriju
modelima se dodatno otežava zadatak reidentifikacije, a sama procjena performansi modela
postaje realističnija i pouzdanija jer je bliža stvarnim uvjetima primjene.

SSMOT ReID skup podataka konkretno sadrži: 1) 5227 slika u skupu za treniranje -
minimalno osam primjera za svaki od identiteta namijenjenih za učenje ReID modela; 2)
122 slike u skupu upita - po dvije slike za svaki testni identitet; 3) 488 slika u galeriji -
šest pozitivnih primjera i dva distraktora za svaki testni identitet. U skupu za treniranje
broj primjera po identitetu varira: od minimalnih 8 do maksimalnih 128, pri čemu većina
identiteta (54%) ima izmed̄u 8 i 20 slika. Distribucija broja primjera po identitetu u ReID
skupu za treniranje ilustrirana je na Slici 4.15.

Slika 4.15: Histogram distribucije broja slika po identitetu u ReID skupu za treniranje.

Korištenje većeg broja upita po identitetu u evaluaciji reidentifikacijskog modela može
doprinijeti pouzdanijoj procjeni njegovih performansi. Odabirom dviju slika po testnom
identitetu u skupu upita evaluacija postaje pouzdanija nego kad se koristi samo jedno, a
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pritom se ne uvodi značajno dodatno opterećenje. Na taj je način moguće provjeriti koliko je
model stabilan u pronalasku istog identiteta kada se koriste njegovi različiti vizualni prikazi.
Upravo takav pristup, s dvjema slikama po identitetu, koristi se i u [263, 264]. Kako bi se
ReID modelima dodatno otežao postupak pretrage galerije s ciljem pronalaska pozitivnih
primjera, za svaki testni identitet u galeriju su uključena i dva distraktora koja vizualno
nalikuju slikama upita. Na Slici 4.16 prikazani su primjeri distraktora za tri testna identiteta.

Uz osnovnu galeriju, kao "teži" scenarij, promatrana je i proširena galerija s 1138 slika,
koja je zbog ograničenog broja dostupnih identiteta proširena dodavanjem slika iz skupa za
učenje te dodatnih distraktora. Iako idealno rješenje podrazumijeva korištenje primjera iden-
titeta koji nisu prisutni ni u skupu za učenje ni u skupu za testiranje, uključivanje uzoraka
iz skupa za učenje ipak je prihvatljivo jer ne dolazi do preklapanja s testnim identitetima, a
istovremeno se povećava raznolikost i veličina galerije. Na taj način evaluacija postaje zah-
tjevnija i realističnija, budući da bolje odražava uvjete u kojima je potrebno pronaći traženi
identitet u znatno većem prostoru pretraživanja.

Slika 4.16: Primjeri: upit - pozitivni primjeri + distraktori.
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4.4. Skup videozapisa za praćenje plovila

Skup videozapisa završna je i ključna komponenta SSMOT skupa podataka, namijenjena
istraživanju i evaluaciji metoda za praćenje plovila u stvarnim pomorskim uvjetima. Za raz-
liku od statičnih slika koje su korištene u detekcijskom podskupu, videozapisi omogućuju
analizu vremenske povezanosti izmed̄u uzastopnih okvira te praćenje dinamičkih promjena
u kretanju plovila kroz vrijeme. Osim samog kretanja, videozapisima se mogu proučavati i
med̄usobni prostorni odnosi plovila u vidnom polju, poput njihovog približavanja, preklapa-
nja i privremene zaklonjenosti, odnosno pojave okluzije.

4.4.1. Način označavanja podataka

Svi videozapisi unutar SSMOT skupa podataka anotirani su korištenjem alata Computer Vi-

sion Annotation Tool (CVAT) [259]. Proces anotiranja obavljen je ručno, uz naknadnu pro-
vjeru i korekciju, kako bi se osigurala točnost i konzistentnost anotacija. Korišten je MOT

1.1. (Multiple Object Tracking) format oznaka, koji omogućuje praćenje svih instanci plovila
kroz uzastopne okvire videozapisa.

U odnosu na detekcijski podskup, u kojem se svaka slika označava zasebno, MOT ano-
tacije zahtijevaju očuvanje identiteta svih objekata kroz okvire videozapisa. Svakom plovilu
pri prvom pojavljivanju dodjeljuje se jedinstveni identifikator (ID) koji ostaje nepromije-
njen tijekom cijelog razdoblja njegova praćenja, uključujući i vrijeme djelomične ili potpune
okluzije. Takav pristup omogućuje kontinuirano i dosljedno praćenje objekata kroz cijeli vi-
deozapis. Kategorije plovila u MOT skupu usklad̄ene su s onima korištenima u detekcijskom
podskupu, kako bi se osigurala konzistentnost izmed̄u različitih dijelova SSMOT skupa po-
dataka. Sve klase koriste iste nazive i oznake kao u detekcijskom dijelu (0 - Small Craft, 1 -
Small Fishing Boat, 2 - Small Passenger Ship, itd.), čime je omogućena njihova zajednička i
med̄usobno kompatibilna uporaba.

Svaki videozapis ima odgovarajuću tekstualnu datoteku s anotacijama u sljedećem for-
matu:

frame, id, x, y, width, height, confidence, class, visibility

gdje svaki redak predstavlja jednu instancu plovila u odred̄enom okviru videozapisa. Para-
metar frame označava redni broj okvira u kojem se plovilo pojavljuje, dok id predstavlja
njegov jedinstveni identifikator koji ostaje nepromijenjen kroz sve okvire u kojima je plovilo
prisutno. Koordinate x i y definiraju položaj gornjeg lijevog kuta graničnog okvira plovila, a
width i height njegovu širinu i visinu izraženu u pikselima. Vrijednost confidence ozna-
čava razinu pouzdanosti detekcije (u ground-truth oznakama obično postavljena na 1), dok
se vrijednost class odnosi na pripadajuću kategoriju plovila. Zadnji parametar visibility
koristi se kao binarna oznaka vidljivosti, pri čemu vrijednost 0 označava potpuno zaklonjen,
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a vrijednost 1 vidljiv objekt.
Primjer isječka iz anotacijske datoteke prikazan je na Slici 4.17. Prikazani redci odgo-

varaju zapisima o tri različita plovila unutar prva dva okvira videozapisa, gdje svaka linija
sadrži njihove prostorne koordinate, dimenzije graničnih okvira, te informacije o pripadaju-
ćoj klasi i trenutnoj vidljivosti objekta.

1 1,1,160.6,165.15,115.70,84.13,1,10,1
2 1,2,598.62,145.75,276.77,124.46,1,10,1
3 1,3,1052.76,223.45,10.60,6.30,1,8,1
4 2,1,160.6,165.15,115.70,84.13,1,10,1
5 2,2,599.15,145.77,276.61,124.45,1,10,1
6 2,3,1052.84,223.45,10.60,6.30,1,8,0

Slika 4.17: Primjer formata MOT 1.1 oznaka preuzetih iz CVAT-a.

4.4.2. Opće karakteristike SSMOT videozapisa

SSMOT skup za praćenje obuhvaća videozapise snimljene u različitim uvjetima osvjetljenja
i vidljivosti, tijekom različitih doba dana. U njemu su zastupljene jednostavnije scene s
manjim brojem plovila u vidnom polju, kao i složenije sekvence s pojačanim prometom
te med̄usobnim preklapanjima i mimoilaženjima plovila. Primjeri reprezentativnih kadrova
SSMOT videozapisa prikazani su na Slici 4.18. Kadrovi različitih razina osvjetljenja i broja
objekata prikazani su u prvom retku na Slici 4.18, dok su u drugom retku ilustrirane situacije
med̄usobnog mimoilaženja i preklapanja plovila. Skup takod̄er obuhvaća izazovne slučajeve
u kojima je potrebno istodobno pratiti više vizualno sličnih objekata (primjer na Slici 4.19),
kao i situacije djelomičnih i potpunih okluzija te ulazaka i izlazaka objekata iz vidnog polja.

Slika 4.18: Primjeri scena iz SSMOT skupa videozapisa.

Skup uključuje ukupno 18 videozapisa različitog trajanja, snimljenih u stvarnim obalnim
uvjetima u kolovozu i rujnu 2023. godine pomoću nadzorne kamere opisane u potpoglav-
lju 4.1. Većina videozapisa u skupu ima frekvenciju od 25 okvira u sekundi (FPS), dok se
manji broj bilježi pri 10 ili 30 FPS. Ukupno trajanje videozapisa iznosi 9 minuta i 34 se-
kunde, što odgovara 12946 pojedinačnih okvira. U njima se javlja 149 različitih plovila, s
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Slika 4.19: Primjer videozapisa (SSMOT_12) u kojem je potrebno istovremeno pratiti veći
broj vizualno sličnih plovila koja se med̄usobno preklapaju i mimoilaze.

ukupno 91006 graničnih okvira. Videozapisi su pohranjeni u .mp4 formatu s razlučivošću
1280×720 piksela. Detaljan pregled karakteristika pojedinih videozapisa prikazan je u Ta-
blici 4.3. Tablica prikazuje osnovne tehničke specifikacije svakog videozapisa — njegovu
duljinu, broj okvira i anotiranih putanja plovila, kao i ukupan broj graničnih okvira. Stupac
Gustoća prikazuje prosječan broj označenih plovila po okviru videozapisa, čime se procje-
njuje razina složenosti pojedine scene. Vrijednost u retku Ukupno predstavlja prosječnu
gustoću izračunatu za čitav skup, odnosno omjer ukupnog broja graničnih okvira i ukupnog
broja okvira svih videozapisa.

Tablica 4.3: Osnovne karakteristike videozapisa u SSMOT skupu za praćenje.

Naziv FPS Broj okvira Duljina Putanje Granični okviri Gustoća

SSMOT_1 25 287 0:11 5 1435 5.0
SSMOT_2 30 604 0:20 9 4415 7.3
SSMOT_3 25 1037 0:41 7 7049 6.8
SSMOT_4 25 370 0:14 8 2850 7.7
SSMOT_5 25 433 0:17 7 2901 6.7
SSMOT_6 25 856 0:34 11 7990 9.3
SSMOT_7 25 451 0:18 4 1804 4.0
SSMOT_8 25 1697 1:07 11 10494 6.2
SSMOT_9 25 922 0:36 8 6357 6.9
SSMOT_10 25 836 0:33 12 6571 7.9
SSMOT_11 25 277 0:11 12 3185 11.5
SSMOT_12 25 928 0:37 10 6930 7.5
SSMOT_13 10 646 1:04 7 3647 5.6
SSMOT_14 10 598 0:59 9 5072 8.5
SSMOT_15 25 585 0:23 7 4095 7.0
SSMOT_16 25 940 0:37 10 8742 9.3
SSMOT_17 30 941 0:31 4 3764 4.0
SSMOT_18 25 538 0:21 8 3705 6.9

Ukupno 12946 9:34 149 91006 7.0

Videozapisi obuhvaćaju svih jedanaest kategorija plovila, pri čemu je raspodjela putanja
po kategorijama prikazana na Slici 4.20. Detaljni podaci o broju plovila svake kategorije
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u pojedinim videozapisima dostupni su u Dodatku B. Iako su pojedine klase, poput Small

Fishing Boat, slabije zastupljene, to ne predstavlja značajno ograničenje ovog skupa poda-
taka, čija je osnovna svrha ispitati konzistentnost praćenja i zadržavanja identiteta objekata
kroz videozapis. Sama klasifikacija plovila temelji se na predvid̄anjima detektora, a evalu-
acija performansi detektora provodi se na zasebno pripremljenom testnom podskupu SSMOT
skupa za detekciju.

Slika 4.20: Zastupljenost pojedinih kategorija plovila u putanjama SSMOT videozapisa.

4.4.3. Okluzije u videozapisima

Okluzije plovila u videozapisima mogu biti djelomične ili potpune. Djelomične okluzije
javljaju se kada je plovilo samo dijelom prekriveno drugim plovilom ili elementom scene,
dok potpune okluzije označavaju situacije u kojima je plovilo u potpunosti zaklonjeno odre-
d̄eni broj uzastopnih okvira. U daljnjem tekstu pojam okluzije odnosi se upravo na situ-
acije potpune zaklonjenosti u kojima plovilo privremeno nije vidljivo u kadru te se potom
se ponovno pojavljuje. Takvi su primjeri osobito važni za procjenu sposobnosti algoritama
praćenja da zadrže identitet objekta unatoč privremenom prekidu vidljivosti. Stoga je pri
konstrukciji SSMOT skupa videozapisa posebna pažnja posvećena uključivanju dovoljnog
broja primjera potpunih okluzija, kako bi se osigurali uvjeti za realniju procjenu robusnosti
algoritma u složenim scenarijama zaklonjenosti.

Okluzije se dodatno mogu razvrstati na kratkotrajne i dugotrajne, ovisno o trajanju raz-
doblja u kojem je objekt zaklonjen. Kratkotrajne okluzije obično traju svega nekoliko uzas-
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topnih okvira i predstavljaju manji izazov za algoritme praćenja, dok dugotrajne okluzije,
koje mogu potrajati i nekoliko sekundi, značajno povećavaju rizik od gubitka identiteta
objekta i pogrešne reasocijacije nakon ponovnog pojavljivanja U postojećoj literaturi ne
postoji kriterij koji jednoznačno definira granicu izmed̄u kratkotrajnih i dugotrajnih oklu-
zija. Predloženi pragovi značajno se razlikuju med̄u autorima - od pragova od 20 [25] i 30
[265] okvira, do vremenskih pragova od 2 s [23] i 5 s [24].

U okviru SSMOT skupa videozapisa evidentirana je ukupno 31 okluzija. Histogram
njihovog trajanja prikazan je na Slici 4.21. Budući da skup obuhvaća videozapise različitih
frekvencija okvira u sekundi (FPS), trajanje okluzija izraženo je u sekundama. Od ukupnog
broja, sedam okluzija traje do 1 s, pri čemu najkraća traje 0.4 s (10 okvira). Četrnaest okluzija
(45.16%) traje dulje od 5 s, dok su tri dulje od 20 s, pri čemu najdulja traje 29.05 s. Detaljan
popis svih zabilježenih okluzija, s pripadajućim informacijama o videozapisu, ID-u objekta,
kategoriji, početnom i završnom okviru okluzije te njenom trajanju u okvirima i sekundama,
nalazi se u Dodatku B.

Slika 4.21: Histogram trajanja potpunih okluzija u SSMOT videozapisima.

Okluzije se u ovom radu, s obzirom na trajanje izraženo u sekundama, dijele na kratke,
srednje duge i duge. Kratkima se smatraju okluzije koje traju najviše 2 s (≤ 2 s), srednje
dugima one čije je trajanje dulje od 2 s, ali ne prelazi 8 s (> 2 s, ≤ 8 s), dok se dugima
smatraju okluzije dulje od 8 s (> 8 s). U skladu s definiranom klasifikacijom, u SSMOT
skupu videozapisa zabilježeno je 13 (41.9%) kratkih, 8 (25.8%) srednje dugih i 10 (32.3%)
dugih okluzija. Slika 4.22 prikazuje po jedan primjer svake kategorije okluzije: na vrhu je
prikazana kratka okluzija iz SSMOT_16 videozapisa koja traje tek 0.4 s, u sredini se nalazi
srednje duga okluzija u trajanju od 2.08 s iz SSMOT_5 videozapisa, a na dnu duga okluzija
iz SSMOT_14 videozapisa u kojoj trajekt zaklanja jedrilicu 29.05 s.
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Slika 4.22: Primjeri okluzija različitih trajanja iz SSMOT skupa podataka.
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5. MODEL ZA DETEKCIJU PLOVILA

Detekcija plovila ključan je korak modernih algoritama za praćenje i nadzor pomorskog
prometa, koji značajno utječe na njihove konačne performanse. Zbog svojih ograničenja,
tradicionalni pristupi detekciji objekata temeljeni na pomičnim prozorima i ručno dizajni-
ranim značajkama poput HOG [266], SIFT [267], SURF [268] i Haarovih značajki [269],
gotovo su u potpunosti zamijenjeni detektorima dubokog učenja, koji zahvaljujući automat-
skom učenju robusnih značajki i superiornim performansama danas predstavljaju standard
[270, 271, 73]. Med̄u detektorima temeljenima na dubokom učenju posebno se ističu detek-
tori iz YOLO familije [88, 272, 273, 274, 275, 276, 277, 278, 279, 280], koji su zahvaljujući
kombinaciji brzine i točnosti postali vodećim odabirom u mnogim aplikacijama za detekciju
objekata u stvarnom vremenu.

U ovom poglavlju opisan je model razvijen za automatsku detekciju plovila, koji se teme-
lji na YOLO11 arhitekturi. U nastavku je prikazan postupak razvoja, treniranja i evaluacije
YOLO11 detektora za prepoznavanje plovila. Prvo je opisana sama arhitektura YOLO mo-
dela, s naglaskom na prednosti korištene verzije. Zatim je detaljno opisan proces treniranja
modela, uključujući pripremu podataka, specifikacije okruženja na kojem se model trenirao,
kao i vrijednosti korištenih hiperparametara. Na kraju su prikazani i analizirani rezultati
evaluacije dobivenog modela, pri čemu su korištene standardne metrike poput preciznosti,
odziva i srednje prosječne preciznosti (mAP).

5.1. YOLO detektor

Joseph Redmon i suradnici [88] predstavili su 2016. godine prvu verziju "You Only Look
Once" (YOLO) algoritma, koja je revolucionirala pristup detekciji objekata koristeći samo
jedan prolaz kroz neuronsku mrežu za cijeli proces detekcije. YOLO dijeli ulaznu sliku na
mrežu od S×S ćelija, pri čemu se za svaku ćeliju predvid̄a B graničnih okvira i C vjerojat-
nosti klasa. Za svaki granični okvir, model predvid̄a koordinate središta (x,y), širinu i visinu
(w,h) te sigurnost (pc) da okvir sadrži objekt. Izlaz mreže je S×S× (B ·5+C) volumen, a
arhitektura, inspirirana GoogleLeNet-om [281], prikazana je na Slici 5.1.

Prednosti predloženog YOLO detektora uključuju jednostavnu implementaciju, brzu de-
tekciju u stvarnom vremenu, implicitno kodiranje kontekstualnih i vizualnih informacija ana-
lizom cijele slike te end-to-end optimizaciju. Med̄utim, ovakav YOLO detektor ima odre-
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Slika 5.1: Arhitektura originalnog YOLO detektora: S = 7, B = 2, C = 20.
(Slika preuzeta iz [88], uz izmjene.)

d̄ena ograničenja u odnosu na druge state-of-the-art detektore: manje je precizan u lokaliza-
ciji objekata, ima poteškoće s detekcijom manjih i blisko grupiranih objekata, a svaka ćelija
može predvidjeti samo dva granična okvira (B = 2) i jednu klasu.

YOLOv2 [272], takod̄er poznat kao YOLO9000, proširuje mogućnosti detekcije obje-
kata na preko 9000 različitih klasa uz povećanu rezoluciju ulaznih slika. Model uvodi re-
ferentne okvire (engl. anchor boxes), unaprijed definirane pravokutne regije različitih ve-
ličina i omjera, koje služe kao polazna točka za predvid̄anje graničnih okvira, a njihov se
odabir optimizira primjenom K-Means [282] algoritma. Takod̄er primjenjuje normalizaciju
mini-serija (engl. batch normalization) [181] i Darknet-19 okosnicu baziranu na VGG [209]
arhitekturi. Treća verzija YOLO detektora, YOLOv3 [273], unaprjed̄uje model korištenjem
Darknet-53 okosnice s rezidualnim blokovima [180] te uvodi koncept sličan piramidalnoj
mreži značajki [283] za poboljšanu detekciju objekata različitih veličina.

YOLOv3 posljednja je verzija YOLO detektora koju je razvio originalni autor YOLO-a,
Joseph Redmon. U med̄uvremenu, predstavljene su verzije YOLO detektora od YOLOv4
[274] do najrecentnije verzije YOLOv12 [284], te verzije poput PP-YOLO [278], YOLOR
[279], YOLOX [280] i YOLO-NAS [285] detektora. Verzije YOLO algoritma, od YOLOv1
do YOLOv4, koriste DarkNet okvir otvorenog koda, koji je razvijen u programskom jeziku
C i CUDA-i. Verzija YOLOv5 [275], koju je razvio tim iz tvrtke Ultralytics, prva je verzija
YOLO-a koja je umjesto u DarkNet okviru implementirana u PyTorch-u [286]. Budući da je
YOLOv5 objavljen samo kao GitHub repozitorij, a ne kao recenzirano istraživanje, postojale
su sumnje u autentičnost i učinkovitost tog modela. Iako odgovarajući istraživački rad nije
bio dostupan, činjenica da je YOLOv5 kasnije primijenjen u brojnim aplikacijama s učinko-
vitim rezultatima počela je jačati kredibilitet modela [287]. U 2023. godini, isti tim je izdao
poboljšani YOLO detektor nazvan YOLOv8 [276], a 2024. godine i verziju YOLO11 [288].
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5.1.1. YOLO11

Svaka verzija YOLO serije postavila je nove standarde u detekciji objekata, uvodeći ključne
arhitektonske inovacije koje unaprjed̄uju performanse detektora u različitim zadacima raču-
nalnog vida [159]. Posljednja verzija razvijena od strane Ultralytics tima, YOLO11 [288],
donosi poboljšanja u vidu ekstrakcije značajki i balansa izmed̄u točnosti i brzine izvod̄enja.
Detaljna arhitektura YOLO11 detektora prikazana je na Slici 5.2.

Slika 5.2: Arhitektura YOLO11 detektora. (Slika preuzeta iz [289].)

YOLO11 detektor sastoji se od tri osnovne komponente: okosnice (engl. backbone),
vrata (engl. neck) i glave (engl. head). Okosnica detektora zadužena je za izdvajanje re-
levantnih značajki različitih skala iz dane ulazne slike. Tako dobivene značajke se potom
agregiraju i obogaćuju u med̄usloju, odnosno vratu detektora, kako bi se povećala sposob-
nost modela da prepoznaje objekte različitih veličina. Na temelju agregiranih značajki glava
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detektora, putem triju paralelnih grana, generira predvid̄anja koordinata graničnih okvira te
vjerojatnosti njihove pripadnosti pojedinim klasama, zajedno s odgovarajućim pouzdanos-
tima (engl. confidence score).

Temelj arhitekture YOLO11 detektora čine CBS (Conv-BN-SiLU) blokovi koji objedi-
njuju konvoluciju (Conv), normalizaciju mini-serija (engl. Batch Normalization, BN) i SiLU
(engl. Sigmoid Linear Unit) aktivacijsku funkciju [290]. Ovi blokovi osiguravaju izdvajanje
relevantnih značajki, stabilizaciju protoka podataka i poboljšane performanse modela, ge-
nerirajući rafinirane mape značajki potrebne za predvid̄anje graničnih okvira i klasifikaciju
objekata [291]. C2f blok, korišten u YOLOv8 detektoru, u YOLO11 je zamijenjen C3k2 blo-
kom. Ovaj blok koristi dvije manje konvolucije (s jezgrom veličine 2) umjesto jedne velike,
čime se postiže brža obrada uz zadržavanje visoke točnosti modela [289]. Nadalje, YOLO11
zadržava SPPF komponentu (Spatial Pyramid Pooling - Fast) prethodnih verzija, uz dodatak
modula prostorne pažnje C2PSA (Convolutional block with Parallel Spatial Attention), koji
modelu omogućuje preciznije usmjeravanje pažnje na ključne regije slike, čime se dodatno
poboljšava ekstrakcija značajki [291]. Ove arhitektonske nadogradnje omogućuju YOLO11
precizniju detekciju složenih detalja na slikama, posebno u zahtjevnim scenarijima s malim
ili djelomično zaklonjenim objektima [159].

Dostupno je više različitih inačica YOLO11 detektora koje su optimizirane za različite
potrebe u pogledu brzine, veličine modela i točnosti. Najmanja varijanta, u pogledu broja
parametara i računalne složenosti, YOLO11n, dizajnirana je za rad u stvarnom vremenu na
ured̄ajima ograničenih resursa. S druge strane, YOLO11x je najveći model koji karakterizi-
raju najbolje performanse detekcije, ali i znatno veći zahtjevi za računalnim resursima i dulje
vrijeme izvod̄enja. Izmed̄u navedenih krajnosti nalaze se inačice, YOLO11s, YOLO11m i
YOLO11l, koje nude dobar balans izmed̄u točnosti detekcije i računske složenosti. Na slici
5.3 prikazani su rezultati evaluacije na MS COCO skupu podataka [166], gdje su uspored̄ene
različite inačice YOLO11 modela s prethodnim verzijama YOLO detektora. Može se uočiti
da YOLO11 konzistentno ostvaruje povoljniji kompromis izmed̄u brzine izvod̄enja i točnosti
detekcije, pri čemu manji modeli (n, s) omogućuju bržu inferenciju, dok veći (l, x) postižu
višu razinu preciznosti.

Iako je YOLOv12 najrecentniji model iz YOLO obitelji detektora, rezultati kompara-
tivnih studija pokazuju da YOLO11 ostvaruje bolje performanse, nadmašujući pritom svog
nasljednika [289, 293, 294]. Arhitektonske nadogradnje poput mehanizma pažnje po po-
dručjima i R-ELAN modula u YOLOv12 povećale su složenost modela, ali nisu donijele
očekivana poboljšanja, čime su dodatno istaknuti izazovi učinkovite integracije naprednih
mehanizama pažnje u YOLO okvir [289]. U odnosu na YOLO11, YOLOv12 postiže slabiju
brzinu izvod̄enja i lošije rezultate, uz veće računalne zahtjeve [289, 293, 294]. Za primjene
u stvarnom vremenu koje zahtijevaju visoku brzinu i preciznost, optimalnim izborom se po-
kazala inačica YOLO11 serije, YOLO11n [293].
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Slika 5.3: Usporedba performansi inačica YOLO11 detektora s prethodnim YOLO
modelima (YOLOv5–YOLOv10). (Slika preuzeta iz [292].)

5.2. Treniranje modela

5.2.1. Tehničke specifikacije računalnog okruženja

U okviru istraživanja korištena je usluga Napredno računanje Sveučilišta u Zagrebu Sve-
učilišnog računskog centra (Srce) [295]. Preciznije, za potrebe treniranja modela korištena
je platforma Jupyter s operacijskim sustavom Ubuntu 22.04.4 LTS (Jammy Jellyfish). Ko-
risničkom okruženju unutar SRCE Jupyter platforme dodijeljena je MIG instanca GPU-a
NVIDIA A100 s 4.9 GiB VRAM-a, dok su CPU i RAM resursi bili ograničeni unutar za-
jedničkog fizičkog čvora (AMD EPYC 7713P, 32 jezgre, 239 GiB RAM-a). Za pripremu,
treniranje i evaluaciju modela korišteno je okruženje JupyterLab, uz dodatnu uporabu Pyt-
hon skripti i Ultralytics CLI-a. Softversko okruženje uključuje programski jezik Python

3.11.9, uz korištenje paketa Ultralytics 8.3.178 i okvira PyTorch 2.8.0, dok su za obradu i vi-
zualizaciju podataka korištene standardne biblioteke poput NumPy-a, Pandas-a, OpenCV-a,
Albumentations-a i Matplotlib-a.

5.2.2. Odabrani modeli i vrijednosti hiperparametara

U radu su korištene tri inačice YOLO11 detektora: YOLO11n, YOLO11s i YOLO11m. Veće
inačice YOLOv11l i YOLO11x nisu korištene zbog znatno veće računalne složenosti i memo-
rijskih zahtjeva. Odabrane manje inačice predstavljaju balans izmed̄u točnosti i učinkovitosti
te su pogodnije za primjenu u stvarnom vremenu. Odabrani modeli trenirani su kroz ukupno
250 epoha s mini-serijama veličine 8, koje predstavljaju kompromis izmed̄u potrošnje me-
morije i brzine izvod̄enja [293]. Sve ulazne slike svedene su na rezoluciju 640× 640, koja
se obično koristi pri treniranju YOLO modela [284, 293]. Nastavno na praksu ranijih is-
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traživanja [277, 284, 296, 293], za optimizaciju težina koristi se SGD (Stochastic Gradient

Descent) optimizator s momentom 0.937 i koeficijentom L2 regularizacije (engl. weight

decay) 5 · 10−4, dok je vrijednost stope učenja postavljena na 0.01. Dodavanjem momenta
osigurava se stabilnija konvergencija tijekom procesa treniranja, a regularizacija težina sprje-
čava prenaučenost modela [297]. Treniranje je započelo fazom zagrijavanja (engl. warmup)
u trajanju od tri epohe, tijekom kojih se stopa učenja i moment postupno povećavaju do za-
danih vrijednosti kako bi se stabilizirao proces učenja. Funkcija gubitka definirana je kao
linearna kombinacija lokalizacijskog (Lbox), klasifikacijskog (Lcls) i distribucijskog (engl.
Distribution Focal Loss, Ld f l) gubitka: Ltotal = λbox ·Lbox + λcls ·Lcls + λd f l ·Ld f l , pri
čemu su težine postavljene na λbox = 7.5, λcls = 0.5, λd f l = 1.5 [277, 296, 288, 284], čime
je naglašena važnost precizne lokalizacije objekata. Prag pouzdanosti detekcije postavljen
je na 0.25, a prag preklapanja graničnih okvira (IoU) na 0.7. Takod̄er je korištena i metoda
ranog zaustavljanja s pragom od 15 epoha kako bi se spriječilo nepotrebno produžavanje
treniranja detektora u slučaju stagnacije performansi modela na skupu za validaciju.

Kako bi se povećala raznolikost skupa podataka, smanjila prenaučenost i osigurala veća
robusnost modela u stvarnim uvjetima primjene, tijekom treniranja primijenjene su različite
augmentacije podataka [297, 298]. Korištene su fotometrijske augmentacije (promjene
nijanse, zasićenosti i svjetline), geometrijske transformacije (translacije, skaliranje, horizon-
talno zrcaljenje), nasumično brisanje dijela slike te kompozitna augmentacija mozaika [274]
koja kombinira više slika iz skupa za treniranje u jednu. Uz prethodno navedene, ručno de-
finirane augmentacije korišten je i RandAugment [299], koji dodatno proširuje varijabilnost
podataka nasumičnim odabirom transformacija iz unaprijed definiranog skupa. Detaljne vri-
jednosti hiperparametara prikazane su u Tablici 5.1.

5.2.3. Proces treniranja

Sve inačice detektora, YOLO11n/s/m, prvo su trenirane 100 epoha na manjoj verziji SSMOT
podskupa za detekciju, koja sadrži 3131 sliku s ukupno 13 680 objekata. Podaci su po-
dijeljeni u omjeru 85:15 na skup za treniranje (2661 slika, 11 539 objekata), korišten za
optimizaciju parametara modela, i na skup za validaciju (470 slika, 2141 objekt), korišten
za praćenje performansi na nevid̄enim podacima. Kao početne točke, koristile su se težine
YOLO11n/s/m modela predtrenirane na MS COCO skupu podataka.

U svrhu osiguravanja veće raznolikosti objekata i scena te poboljšanja sposobnosti gene-
ralizacije detekcijskog modela, provedeno je poluautomatizirano proširenje skupa podataka.
YOLO11m model s najboljim rezultatima na skupu za validaciju korišten je za generira-
nje inicijalnih anotacija koje su potom ručno korigirane. Na taj je način dobiven prošireni
SSMOT skup podataka za detekciju koji obuhvaća 8979 slika s ukupno 45 830 instanci obje-
kata, podijeljen u omjeru 85:15 na skup za treniranje i skup za validaciju. Više o samoj struk-
turi i karakteristikama SSMOT skupa podataka za detekciju može se pronaći u odjeljku 4.2.
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Tablica 5.1: Hiperparametri korišteni prilikom treniranja YOLO11n/s/m modela.

Hiperparametar Vrijednost

K
on

fig
ur

ac
ija

:t
re

ni
ra

nj
e

Ukupan broj epoha 250
Veličina mini-serije 8
Veličina ulazne slike 640×640
Optimizator SGD
Stopa učenja 0.01
Moment 0.937
L2 regularizacija 0.0005
Prag za rano zaustavljanje 15

Početno zagrijavanje
epohe 3
moment 0.8
stopa učenja pomaka 0.1

G
ub

ita
k λbox 7.5

λcls 0.5
λd f l 1.5

Au
gm

en
ta

ci
je

Fotometrijske
nijansa 0.015
zasićenost 0.7
svjetlina 0.4

Geometrijske
translacija 0.1
skaliranje 0.5
horiz. zrcaljenje 0.5

Slučajno brisanje 0.4

Mozaik 1.0

Auto augmentacije RandAugment

Nakon toga, svi modeli su se nastavili trenirati dodatnih 150 epoha na proširenom skupu
podataka za detekciju, pri čemu su upotrijebljene iste vrijednosti hiperparametara kao i u
prvih 100 epoha. Naposlijetku, YOLO11n/s/m modeli s najboljim performansama na va-
lidacijskom skupu evaluirani su na zasebnom testnom podskupu SSMOT skupa podataka.
Rezultati evaluacije prikazani su i raspravljeni u sljedećem odjeljku.

5.3. Evaluacija modela

Kako bi se procijenila učinkovitost treniranih detektora, provedena je njihova evaluacija na
zasebnom testnom podskupu SSMOT skupa podataka za detekciju. Pri tom su se koristile
standardne metrike koje objektivno kvantificiraju sposobnost modela u detekciji objekata
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različitih klasa. U nastavku se prvo definiraju metrike koje su korištene (5.3.1), a potom se
prikazuju i analiziraju dobiveni rezultati (5.3.2).

5.3.1. Korištene metrike

Standardne metrike koje su korištene za evaluaciju detekcijskih modela su redom preciznost,
odziv, mAP50 i mAP50:95.

Detekcija modela se smatra točnom (engl. True Positive) ako preklapanje predvid̄enog
Bp i stvarnog Bgt graničnog okvira prelazi zadani prag µ, odnosno ako vrijedi IoU(Bp,Bgt) =

površina(Bp∩Bgt)/površina(Bp∪Bgt)≥ µ. U suprotnom, detekcija se smatra lažnom (engl.
False Negative). Stvarni objekti koji nisu detektirani predstavljaju lažno negativne (engl.
False Negative) primjere. Temeljem navedenih klasifikacija definiraju se preciznost (engl.
Precision, P) i odziv (engl. Recall, R):

P =
T P

T P+FP
, R =

T P
T P+FN

, (5.1)

gdje TP, FP i FN redom označavaju broj točnih detekcija, lažnih detekcija i lažno negativ-
nih primjera pri zadanom IoU pragu µ. Navedene metrike najprije se računaju za svaku
klasu zasebno, a ukupna vrijednost se potom izračuna kao aritmetička sredina vrijednosti po
klasama.

Prosječna preciznost (engl. Average Precision, AP) sažima odnos preciznosti i odziva
u jednu vrijednost. Može se interpretirati kao površina ispod preciznost-odziv krivulje:

APµ =

1∫
0

p(r)dr, (5.2)

gdje p(r) označava vrijednost preciznosti za zadanu vrijednost odziva r. U praksi se ra-
čuna prema standardu MS COCO [166] korištenjem 101 točke odziva u intervalu od 0 do 1.
AP50 označava prosječnu preciznost pri fiksnom IoU pragu od 0.5, dok AP50:95 predstavlja
prosjek vrijednosti AP-a kroz pragove od 0.5 do 0.95, u koracima od 0.05, čime se dobiva
stroži i sveobuhvatniji pokazatelj uspješnosti modela. AP vrijednost se računa za svaku klasu
zasebno, a zatim se srednja prosječna preciznost (engl. mean Average Precision, mAP)
dobije kao aritmetička sredina vrijednosti po klasama.

5.3.2. Rezultati evaluacije

Pri izračunu metrika razmatrane su detekcije čija je pouzdanost veća od 0.5, dok je prag prek-
lapanja (IoU) postavljen na 0.5. Tablica 5.2 prikazuje rezultate evaluacije odabranih inačica
YOLO11 detektora na testnom podskupu SSMOT skupa za detekciju, nakon treniranja na
manjoj verziji SSMOT skupa za detekciju te nakon treniranja na njegovoj proširenoj ver-
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ziji. Zajedno s vrijednostima evaluacijskih metrika navedene su i arhitekturne karakteristike
detektora, broj slojeva i parametara modela, te računalna složenost izražena GFLOP (Giga

FLoating point OPeration)1 vrijednostima za veličinu ulazne slike 640×640.

Tablica 5.2: Usporedba arhitekturnih karakteristika i evaluacijskih rezultata odabranih
inačica YOLO11 detektora na SSMOT testnom podskupu.

Model Slojevi Parametri GFLOPs Metrika Prije
prošir.

Poslije
prošir.

YOLO11n 181 2 591 985 6.5

P 0.834 0.908
R 0.730 0.812
mAP50 0.796 0.875
mAP50:95 0.660 0.764

YOLO11s 181 9 432 049 21.6

P 0.869 0.915
R 0.759 0.837
mAP50 0.818 0.891
mAP50:95 0.707 0.799

YOLO11m 231 20 061 489 68.2

P 0.885 0.924
R 0.780 0.862
mAP50 0.844 0.908
mAP50:95 0.752 0.829

Iz rezultata evaluacije prikazanih u Tablici 5.2 vidljiv je pozitivan učinak treniranja mo-
dela na proširenom skupu podataka za detekciju. Zabilježen je porast vrijednosti svih me-
trika kod svih detektora, što upućuje na to da treniranje na većem i raznolikijem skupu po-
dataka značajno doprinosi povećanju robusnosti i pouzdanosti modela u detekciji objekata.
Najbolje performanse, očekivano, ima najveći razmatrani model YOLO11m s vrijednošću
mAP50:95 = 0.829. Med̄utim, performanse manjih modela ne zaostaju značajno: YOLO11s
postiže mAP50:95 = 0.799, dok YOLO11n ostvaruje mAP50:95 = 0.764 s višestruko manjom
računalnom složenošću i brojem parametara, što ga čini dobrim kompromisom izmed̄u toč-
nosti i učinkovitosti, osobito za primjene u stvarnom vremenu ili na ured̄ajima s ograni-
čenim resursima. Nakon dodatnog treniranja na proširenom skupu podataka, YOLO11n
postiže mAP50:95 = 0.764, što nadmašuje performanse najvećeg modela YOLO11m trenira-
nog isključivo na manjem skupu podataka s vrijednosti mAP50:95 = 0.752. Ovakav rezultat
naglašava važnost dodatnog treniranja modela na opsežnijem i reprezentativnom skupu po-
dataka, koji u pojedinim slučajevima može imati veći utjecaj na performanse modela od
njegove same strukturne složenosti. Cjelovit prikaz rezultata svih metrika po klasama i mo-
delima, treniranima prije i nakon proširenja detekcijskog podskupa, nalazi se u Dodatku C
(Tablica C.1), dok su rezultati po klasama finalnih modela izdvojeno prikazani u Tablici 5.3.

1GFLOP = broj milijardi operacija s pomičnim zarezom potrebnih za jedan prolaz kroz mrežu s odred̄enom
veličinom ulazne slike
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Tablica 5.3: Rezultati evaluacije YOLO11n/s/m detektora na testnom SSMOT podskupu,
prikazani po klasama.

YOLO11n YOLO11s YOLO11m
Klasa P R mAP50 mAP50:95 P R mAP50 mAP50:95 P R mAP50 mAP50:95

Small craft 0.974 0.848 0.921 0.747 0.979 0.874 0.935 0.768 0.983 0.877 0.937 0.801
Small Fishing Boat 0.767 0.388 0.599 0.485 0.692 0.424 0.600 0.530 0.688 0.518 0.640 0.573
Small Passenger Ship 0.910 0.874 0.917 0.798 0.907 0.910 0.937 0.830 0.961 0.904 0.946 0.860
Fishing Trawler 0.982 0.951 0.975 0.816 0.983 0.959 0.979 0.845 0.986 0.973 0.985 0.877
Large Passenger Ship 0.995 0.993 0.995 0.975 0.998 0.993 0.994 0.974 0.998 0.992 0.992 0.977
Sailing Boat 0.958 0.895 0.943 0.866 0.974 0.916 0.955 0.903 0.969 0.931 0.964 0.917
Speed Craft 0.835 0.801 0.845 0.680 0.861 0.850 0.883 0.740 0.901 0.869 0.904 0.786
Motorboat 0.748 0.467 0.606 0.500 0.780 0.557 0.668 0.580 0.842 0.633 0.745 0.647
Pleasure Yacht 0.878 0.762 0.852 0.743 0.928 0.768 0.871 0.798 0.904 0.815 0.893 0.829
Ferry 0.985 0.983 0.990 0.928 0.984 0.983 0.989 0.932 0.983 0.990 0.994 0.949
High-speed craft 0.956 0.967 0.980 0.866 0.978 0.972 0.985 0.888 0.951 0.978 0.988 0.907

Zajedno 0.908 0.812 0.875 0.764 0.915 0.837 0.891 0.799 0.924 0.862 0.908 0.829

Modeli najviše poteškoća imaju u ispravnoj detekciji objekata klase Small Fishing Boat,
koja je ujedno i najmanje zastupljena u SSMOT skupu podataka za detekciju. Odziv modela
YOLO11n na toj klasi iznosi svega 0.338, dok je kod modela YOLO11m nešto viši i doseže
0.518. Med̄utim, problem ne proizlazi samo iz nedovoljne zastupljenosti primjera, nego
i iz visoke vizualne sličnosti objekata klase Small Fishing Boat s objektima drugih klasa,
poput klase Speed Craft (otvorene brodice bez nadgrad̄a imaju slične vizualne karakteristike
kao manja otvorena brza plovila). Ta česta zabuna jasno se očituje u matricama konfuzije
na Slici 5.5. Prikazane matrice konfuzije su normalizirane po stupcima, prikazujući tako
relativne udjele umjesto apsolutnih vrijednosti čime se omogućuje jasniji uvid u performanse
modela po klasama, neovisno o njihovoj zastupljenosti u danom skupu podataka 2.

Mali broj primjera u skupu podataka za treniranje, ne mora nužno predstavljati ograni-
čenje ako je riječ o klasi s jasno prepoznatljivim i distinktivnim vizualnim obilježjima. To
potvrd̄uju vrlo dobri rezultati na klasi High Speed Craft, koja je takod̄er slabo zastupljena
u danom skupu (1357 od 39017 instanci u skupu za treniranje, naspram 1101 za Small Fi-

shing Boat; Poglavlje 4, odjeljak 4.2, Tablica 4.2). Uz Small Fishing Boat, detektori se često
„muče” i s klasom Motorboat, čije se instance nerijetko zamjenjuju s onima klase Speed

Craft ili ostaju nedetektirane pri zadanoj granici pouzdanosti. Srednje vrijednosti postiže i
sama klasa Speed Craft, što se može pripisati intraklasnoj varijabilnosti te djelomičnoj vizu-
alnoj sličnosti s drugim klasama, primjerice sa spomenutom Small Fishing Boat.

Upravo su na tim zahtjevnijim klasama ostvareni najznačajniji pomaci promjenom arhi-
tekture detektora s jednostavnije YOLO11n na složeniju YOLO11m, kao i dodatnim treni-
ranjem na proširenom skupu podataka s većim brojem i raznolikijim primjerima tih klasa.
Navedeno je sažeto ilustrirano na Slici 5.4, koja prikazuje toplinske karte (engl. heatmap)
razlika mAP50:95 vrijednosti: (a) finalnog detektora YOLO11m i jednostavnijih varijanti

2Vrijednosti na dijagonali normalizirane matrice konfuzije u pravilu prikazuju odziv pojedine klase, jer pri-
kazuju udio ispravno detektiranih primjera u odnosu na sve uzorke te klase. Ipak, javljaju se manja odstupanja
u odnosu na formalno izračunate vrijednosti odziva, ponajprije zbog načina na koji YOLO implementira evalu-
aciju (izračunu preciznosti i odziva s dodatnim koracima poput NMS filtriranja i obrade višestrukih detekcija),
kao i zbog numeričkog zaokruživanja prilikom prikaza.
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YOLO11s/m; (b) modela treniranih isključivo na prvoj, manjoj varijanti skupa za detekciju i
onih treniranih na proširenom SSMOT skupu za detekciju. Naglasak je stavljen na mAP50:95

metriku jer ona integrira više različitih IoU pragova i preciznost-odziv krivulju, pružajući
tako robusniju usporedbu od jednopragovnog mAP te pojedinačnih mjera preciznosti i od-
ziva.

YOLO11m - YOLO11n/s

(a) (b)

nakon - prije proširenja

Slika 5.4: Toplinske karte razlika mAP50:95 na testnom skupu: (a) arhitekturni učinak:
YOLO11m u odnosu na YOLO11n/s; (b) učinak treniranja na proširenom skupu za

detekciju: modeli trenirani na proširenoj naspram modela treniranih samo na početnoj
verziji SSMOT skupa za detekciju.

Iz Slike 5.4 (a) je jasno da složenija arhitektura ima konzistentan dobitak nad manjima
pri čemu je dobitak YOLO11m detektora nad manjim modelom YOLO11n izraženiji, što je
bilo i očekivano. Nadalje, najveći dobitak dobiven je na klasi Motorboat (0.147), a slijede
Speed Craft (0.106) i Small Fishing Boat (0.088). Na Slici 5.4 (b) može se uočiti znača-
jan pozitivan učinak treniranja modela na proširenom skupu podataka, osobito kada je riječ
o problematičnim klasama Motorboat (dobitak: YOLO11n - 0.194, YOLO11m - 0.154)
Speed Craft (dobitak: YOLO11n - 0.121, YOLO11m - 0.106) i Small Fishing Boat (dobitak:
YOLO11n - 0.188, YOLO11m - 0.157). Veće, jasno odijeljene klase poput Ferry i Large

Passenger Ship bilježe pozitivne promjene, ali nešto manjeg intenziteta. Pozitivan učinak
proširenja izraženiji je kod manjih modela, dok je kod najvećeg modela YOLO11m prisutan,
ali skromniji.

Kako bi se dobio uvid u performanse različitih varijanti detektora, u nastavku su prikazani
konkretni primjeri njihovih detekcija na testnim slikama.
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Slika 5.5: Normalizirane matrice konfuzije YOLO11n/m detektora na testnom podskupu.
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Primjeri detekcija YOLO11m detektora treniranog na manjem i na proširenom skupu
podataka, prikazani su na Slici 5.6. Mogu se uočiti poboljšanja u detekciji objekata pri sma-
njenoj vidljivosti (druga slika), u prepoznavanju manjih plovila u daljini (prva i četvrta slika)
te u detekciji djelomično zaklonjenih objekata i objekata s preklapajućim graničnim okvi-
rima (treća i četvrta slika). Istodobno, zabilježeni su i izazovi finalnog modela, primjerice
pri detekciji dvaju plovila koja plove paralelno, a model ih spaja u jednu detekciju, kao i pri
ispravnoj klasifikaciji manjih objekata u daljini (prva slika).

YOLO11m (prije) YOLO11m (nakon)

Slika 5.6: Detekcije dobivene YOLO11m detektorom treniranom na manjem skupu
podataka (lijevo) i nakon treniranja na proširenom skupu za detekciju (desno).

S druge strane, Slika 5.7 na istim primjerima usporedno prikazuje detekcije dobivene
finalnim varijantama YOLO11n/s/m detektora. YOLO11m postiže najbolje rezultate u uvje-
tima smanjene vidljivosti, detektirajući sva tri prisutna plovila (druga slika). U slučaju prek-
lapanja/zaklonjenosti jedrilica na četvrtoj slici, YOLO11m i YOLO11s ostvaruju bolje re-
zultate od YOLO11n, dok se u scenariju preklapanja objekata na trećoj slici najuspješniji
pokazuje YOLO11m: YOLO11n generira neprecizan granični okvir, YOLO11s daje dvije
odvojene detekcije umjesto jedne, dok YOLO11m pravilno prepoznaje objekt.
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Slika 5.7: Primjeri detkecija dobivenih finalnim verzijama detektora YOLO11n/s/m.
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Zadatak reidentifikacije plovila od iznimne je važnosti za sustave automatskog praćenja, jer
omogućuje prepoznavanje istog plovila u različitim vremenskim trenutcima i iz različitih
perspektiva. U ovom su poglavlju najprije predstavljena dva modela korištena za reidentifi-
kaciju plovila - ResNet50 i OSNet, zatim je detaljno opisan postupak njihove implementacije
i treniranja, a na kraju su opisane metrike korištene za evaluaciju te su prikazani i analizirani
dobiveni rezultati.

6.1. Korišteni modeli

U svrhu rješavanja problema reidentifikacije odbrane su dvije različite arhitekture dubokih
konvolucijskih mreža - ResNet50 i OSNet. ResNet50 je jedna od najčešće korištenih arhitek-
tura u području računalnog vida koja se, zahvaljujući svojoj robusnosti i fleksibilnosti, koristi
u širokom spektru zadataka, od klasifikacije slika [116, 180, 300] i semantičke segmentacije
[301, 302, 303] pa sve do reidentikacije objekata [304, 305, 306]. S druge strane, OSNet
arhitektura je specijalno razvijena za potrebe zadatka reidentifkacije. Paralelnom primje-
nom i evaluacijom ovih dvaju modela omogućeno je vrednovanje performansi općeg, široko
primjenjivog modela i njegova usporedba s modelom dizajniranim specifično za zadatak re-
identifikacije.

6.1.1. ResNet50

ResNet50 arhitektura dio je obitelji rezidualnih mreža koje su predstavili He i sur. [180]
s ciljem prevladavanja problema degradacije točnosti kod vrlo dubokih neuronskih mreža.
Temeljna ideja počiva na uvod̄enju tzv. prečac (engl. shortcut) veza koje izravno povezuju
ulaz i izlaz odred̄enog sloja mreže tako da se izlaz ne računa samostalno već se zbraja s
izvornim ulaznim podatkom. Na taj način mreža ne uči direktno ciljno preslikavanje f (x),
već rezidualnu funkciju fR(x) = f (x)− x, što u praksi olakšava optimizaciju i omogućuje
treniranje znatno dubljih arhitektura.

ResNet50 sastoji se od 50 slojeva organiziranih kroz dvije vrste rezidualnih modula:
identitetskih (engl. identity) i konvolucijskih (engl. convolution) blokova. Identitetski blo-
kovi primjenjuju izravne prečac veze te se stoga koriste kada su dimenzije ulaza i odabranog
izlaza jednake. S druge strane, u slučajevima različitih dimenzija, koriste se konvolucijski
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blokovi s projekcijskim prečac vezama koje pomoću 1×1 konvolucije usklad̄uju dimenzije
ulaza i izlaza. Ilustracija dviju vrsta rezidualnih blokova prikazana je na Slici 6.1.

input

Conv, 3x3 

Conv, 1x1 

Conv, 1x1 

ReLU

ReLU

linear

ReLU

Identitetski blokKonvolucijski blok

input

Conv, 3x3 

Conv, 1x1 

Conv, 1x1 

Conv, 1x1 

ReLU

ReLU

linear

linear

ReLU

Slika 6.1: Dvije vrste rezidualnih blokova. Svaki blok računa funkciju fR(x)+g(x), gdje x
označava ulaz modula, a fR(x) izlaz triju uzastopnih konvolucijskih slojeva. Funkcija g u

konvolucijskom bloku (lijevo) djeluje kao projekcija kojom se usklad̄uju dimenzije x i fR(x),
dok je u identitetskom bloku (desno) definirana kao g(x) = x. (Slika preuzeta iz [116].)

Osim prečac veza, važnu ulogu u ResNet arhitekturi ima i normalizacija mini-serija, koja
se primjenjuje neposredno iza konvolucije, a prije nelinearne aktivacijske funkcije. Na taj se
način dodatno stabilizira i ubrzava proces treniranja mreže. Detaljna arhitektura ResNet50
mreže korištene u ovom radu, prikazana je na Slici 6.2. U odnosu na izvorni model, izmi-
jenjen je broj neurona u završnom softmax sloju s 1000 (koliko ih ima u ImageNet skupu
podataka) na 220, što odgovara broju različitih identiteta u SSMOT ReID skupu podataka.
Za svaku ulaznu sliku, model izdvaja 2048-dimenzionalni vektor značajki, dobiven na iz-
lazu sloja globalnog prosječnog sažimanja (engl. Global Average Pooling) [307], koji se
potom koristi kao reprezentacija plovila u zadatku reidentifikacije. Informacije sadržane u
2048 dvodimenzionalnih mapa značajki posljednjeg identitetskog bloka sažimaju se u vektor
iste dimenzionalnosti, pri čemu je i-ta komponenta vektora dobivena kao aritmetička sredina
vrijednosti i-te mape značajki, i ∈ {1, . . . ,2048}.

Slika 6.2: Arhitektura ResNet50 modela. (Slika preuzeta iz [116], uz izmjene.)
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6.1.2. OSNet

Kako bi proces reidentifikacije bio što uspješniji, nužno je razviti značajke koje su dovoljno
diskriminativne da jasno razlikuju vrlo slične objekte, a istodobno dovoljno robusne da os-
tanu primjenjive u različitim uvjetima i okruženjima. U tom kontekstu, Zhou i sur. [228]
predlažu OSNet (Omni-Scale Network) model, koji uvodi koncept učenja značajki na više
skala (engl. omni-scale feature learning). Osnovna ideja pritom je istovremeno obuhvatiti
značajke različitih razmjera te ih dinamički kombinirati u jedinstvenu reprezentaciju koja
najbolje odgovara zadanom ulazu.

Temelj OSNet arhitekture čine omni-scale rezidualni blokovi, prikazani na Slici 6.3, koji
se sastoje od više konvolucijskih grana s receptivnim poljima različitih veličina. Recep-
tivno polje dimenzije (2t +1)× (2t +1) dobije se sukcesivnim slaganjem t "laganih" (engl.
lite) 3× 3 konvolucijskih blokova. Ovi blokovi koriste 3× 3 dubinski-razdvojene konvolu-
cije (engl. depth-wise separable convolutions), koje zahtijevaju približno 8 do 9 puta ma-
nje operacija u odnosu na standardne konvolucije [308]. Za razliku od izvorne varijante
dubinski-razdvojene konvolucije, u OSNet-u se najprije provodi 1× 1 konvolucija po ele-
mentima (engl. point-wise convolution), kojom se vrijednosti različitih kanala ulaza na istoj
prostornoj poziciji linearno kombiniraju u novu informaciju. Tek potom se primjenjuje 3×3
dubinska konvolucija (engl. depth-wise convolution), kojom se ulazne značajke filtriraju
korištenjem zasebne konvolucijske jezgre za svaki kanal.

Slika 6.3: Osnovni grad̄evni blokovi OSNet modela. Oznake: AG - agregacijaska vrata; R -
veličina receptivnog polja. (Slika preuzeta iz [228], uz izmjene.)
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Svaka konvolucijska grana generira homogene značajke jedne prostorne skale. Kako
bi se istodobno obuhvatile značajke više različitih skala, OSNet uvodi mehanizam agrega-
cijskih vrata (engl. Agregation Gate, AG), koji dinamički kombinira izlaze pojedinih grana
dodjeljujući im težine, ovisno o ulazu. Time se modelu omogućuje da, za svaku ulaznu sliku,
naglasi one skale ili njihove kombinacije koje su najrelevantnije. Agregacijska vrata najprije
trodimenzionalne ulazne značajke komprimiraju u dvodimenzionalni vektor koristeći sloj
globalnog prosječnog sažimanja. Na dobiveni vektor zatim se primjenjuje mala neuronska
mreža sastavljena od potpuno povezanih slojeva, koja generira koeficijente što služe kao di-
namičke težine za kombiniranje izlaza konvolucijskih grana. Pri tome se koristi jedinstvena
mreža čije su težine zajedničke za sve grane.

Detaljna arhitektura OSNet modela prikazana je na Slici 6.4. Model je dostupan u više
varijanti koje se razlikuju prema širini mreže. Oznake poput 0.5, 0.75 ili 1.0 označavaju
omjer broja kanala u konvolucijskim slojevima u odnosu na osnovnu varijantu, OSNet 1.0.
Manje varijante, poput OSNet 0.75, imaju smanjen broj parametara, zahtijevaju manje raču-
nalnih resursa te omogućuju bržu obradu i manju potrošnju memorije, uz blago smanjenje
performansi.

Slika 6.4: Arhitektura implementiranog OSNet modela.

6.2. Implementacija i treniranje ReID modela

Za implementaciju modela reidentifikacije korištena je Torchreid [309] biblioteka, u kojoj
modeli dolaze s težinama predtreniranim na ImageNet [125] skupu podataka. Pritom za-
dane vrijednosti dimenzija ulaznih slika iznose visina = 256 i širina = 128, što je standard
u reidentifikaciji osoba [228, 310, 311] jer odgovara specifičnom obliku graničnih okvira
za ljude. Budući da takve dimenzije nisu karakteristične za plovila, provedena je prila-
godba: prvo je na podacima za učenje iz SSMOT ReID skupa podataka odred̄ena medijalna
vrijednost omjera širine i visine (≈ 2.3), a zatim je odabrana kombinacija visina = 160 i
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širina = 368 koja zadovoljava taj omjer uz razuman kompromis izmed̄u očuvanja detalja
slike i potrošnje memorije.

6.2.1. Konstrukcija mini-serija

Tijekom treniranja koriste se mini-serije veličine 32 (P×K), pri čemu svaka sadrži P = 8
različitih identiteta i K = 4 slika za svaki identitet. Od tih osam identiteta četiri pripadaju
istoj fokus-klasi, dok se preostala četiri biraju iz ostalih klasa. Na taj način model istodobno
uči izražene med̄uklasne razlike (npr. izmed̄u trajekta i jahte) i suptilne razlike unutar iste
klase (npr. izmed̄u dva trajekta). Konstrukcija mini-serije započinje odabirom fokus-klase
uz vjerojatnosti proporcionalne potenciji Nγ

i , gdje je Ni broj različitih identiteta klase i, dok
eksponent γ = 0.5 ublažava dominaciju velikih klasa. Pri tom se koristi dodatno pravilo
kojim se s vjerojatnošću 0.3 potiče odabir manjinskih klasa (onih s najviše 10 identiteta).
Iz odabrane fokus-klase se nasumično odabiru četiri različita identiteta, a preostala četiri iz
ostalih klasa. Za svaki identitet uzimaju se četiri nasumično odabrane slike.

Kako bi se povećala robusnost modela i njegova sposobnost generalizacije na različite
položaje plovila i uvjete snimanja, tijekom treniranja primijenjene su sljedeće augmentacije
podataka: (i) nasumično horizontalno zrcaljenje, koje smanjuje osjetljivost modela na lijevo-
desnu orijentaciju plovila; (ii) nasumično izrezivanje kojim se simuliraju pomaci i neprecizni
granični okviri; (iii) nasumične promjene svjetline i kontrasta radi veće otpornosti na pro-
mjene osvjetljenja i vremenskih prilika; te (iv) nasumično brisanje pravokutnog područja
kojim se imitira djelomična okluzija plovila.

Prilikom učitavanja u mini seriju, dimenzije odabranih slika se najprije prilagod̄ava za-
danim dimenzijama (visina = 160, širina = 368) primjenom bilinearne interpolacije. Za-
tim se, s vjerojatnošću 0.5, primjenjuje horizontalno zrcaljenje. U sljedećem koraku slika
se bilinearnom interpolacijom privremeno povećava na dimenzije 180× 414, te se iz nje
nasumično izrezuje isječak ciljnih dimenzija 160× 368, čime se uvodi prostorna varijabil-
nost položaja objekta unutar fiksnih ulaznih dimenzija. Nakon toga slijedi nasumična pro-
mjena svjetline s faktorom 0.2 i kontrasta s faktorom 0.15, nakon čega se slika pretvara
u tenzor s vrijednostima u [0,1] te se po kanalima standardizira statistikama ImageNet-a:
(µR, µG, µB) = (0.485, 0.456, 0.406), (σR, σG, σB) = (0.229, 0.224, 0.225). Naposlijetku
se provodi brisanje jednog pravokutnog područja slike koje je nasumično odabrano.

6.2.2. Optimizator i funkcija gubitka

Model reidentifikacije treniran je 32000 iteracija koristeći Adam [312] optimizator s počet-
nom stopom učenja od 3 · 10−4 te koeficijentom L2 regularizacije 5 · 10−5. Stopa učenja se
pritom smanjivala svakih 8000 iteracija faktorom 0.1.

U zadacima reidentifikacije osoba pokazalo se korisnim trenirati modele kombinacijom
klasifikacijskog gubitka unakrsne entropije (engl. Cross-Entropy loss, često nazivan i ID
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loss) i gubitka trojki (engl. triplet loss) [304, 150, 313, 314]. Klasifikacijski gubitak uči
mrežu ispravno razlikovati identitete u skupu za treniranje te tako potiče razvoj diskrimina-
tivnih značajki koje dobro razlikuju poznate identitet, ali sam po sebi ne jamči dobru ge-
neralizaciju na nove, nevid̄ene identitete. S druge strane, gubitak trojki organizira metrički
prostor tako da su pozitivni primjeri istog identiteta bliže, a negativni dalje, što je dobro za
generalizaciju, ali njegovo samostalno korištenje u praksi otežava treniranje te sam proces
čini nestabilnim. Kombinacijom ova dva gubitka postiže se optimalan učinak: klasifika-
cijski gubitak osigurava stabilnu optimizaciju modela, a gubitak trojki pridonosi robusnoj
generalizaciji na nove identitete. Shodno tome, u ovom radu se koristi varijanta kombinacije
s izglad̄ivanjem oznaka (engl. label smoothing) i odabirom teških pozitivnih i negativnih
primjera (engl. hard positive/negative mining).

Neka je I ulazna slika trenutne mini-serije B, p(I) = (p1(I), . . . , pN(I)) predvid̄ena vje-
rojatnosna distribucija po klasama/identitetima za sliku I gdje je N broj identiteta u skupu za
treniranje. Nadalje, neka je y ∈ {1, . . . ,N} stvarni identitet plovila na slici I. Tada se gubitak
unakrsne entropije s izglad̄ivanjem oznaka [315] definira s:

LCE(θ; I,y) =−
N

∑
i=1

qi(y) · log(pi(I)) , (6.1)

gdje θ predstavlja trenutne parametre modela,

qi(y) =


1− ε, ako i = y,

ε

N −1
, inače.

(6.2)

je izglad̄ena verzija oznake y, a ε = 0.1 faktor izglad̄ivanja. Korištenje unakrsne entropije s
izglad̄ivanjem oznaka pokazalo se korisnim jer smanjuje prenaučenost, ublažava pretjerano
samouvjerena predvid̄anja i potiče bolju generalizaciju na nove podatke [315, 150].

Za ulaznu sliku I, neka I∗p označava pozitivni primjer iz trenutne mini-serije koji je naju-
daljeniji od I, a I∗n negativni primjer koji je najbliži I. Formalno, neka je By skup svih slika
dane mini-serije B koje odgovaraju identitetu y, fθ preslikavanje koje danoj slici pridruži m-
dimenzionalni vektor značajki dobiven ReID modelom s parametrima θ, a d : Rd ×Rd → R,
kvadrat euklidske udaljenosti d( f1, f2) = ∥ f1 − f2∥2

2. Tada su teški pozitivni i teški negativni
primjer redom dani s:

I∗p = max
Ib∈By, Ib,I

d ( fθ(I), fθ(Ib)) , I∗n = min
Ib∈B\By

d ( fθ(I), fθ(Ib)) , (6.3)

dok je trostruki gubitak s odabirom teških pozitivnih i teških negativnih primjera [304]
definiran kao:

Ltriplet(θ; I,y) = max
{

0, d
(

fθ(I), fθ(I∗p)
)
−d ( fθ(I), fθ(I∗n ))+m

}
. (6.4)

98



Poglavlje 6. REIDENTIFIKACIJSKI MODEL

Na ovaj način model se prisiljava da uči iz najzahtjevnijih primjera kako bi se ubrzalo i
stabiliziralo učenje diskriminativnih značajki. Konačno, ukupan gubitak modela za dani
ulaz I i pripadajuću oznaku y je onda zbroj gubitaka:

L(θ; I,y) = LCE(θ; I,y)+Ltriplet(θ; I,y). (6.5)

6.3. Evaluacija ReID modela

Kako bi se ocijenila učinkovitost razvijenih modela za reidentifikaciju plovila, provedena
je njihova evaluacija na testnom skupu SSMOT ReID podataka, koji se standardno sastoji
od skupa upita i galerije. Tijekom evaluacije provjerava se sposobnost modela da za svaku
ulaznu sliku iz skupa upita pronad̄e odgovarajuće primjere istog identiteta u galeriji, čime
se ispituje njegova točnost i robusnost u složenim uvjetima pretraživanja kakvi se očekuju
u stvarnoj primjeni. Uspješnost modela kvantitativno je mjerena primjenom standardnih
ReID metrika, koje omogućuju objektivnu procjenu performansi u zadatku reidentifikacije.
U nastavku se najprije u pododjeljku 6.3.1 detaljno opisuju korištene metrike, a zatim su u
pododjeljku 6.3.2 prikazani i analizirani rezultati evaluacije implementiranih modela.

6.3.1. Korištene metrike

Za potrebe kvantitativne procjene performansi odabrane su standardne metrike koje se uobi-
čajeno primjenjuju u području reidentifikacije. Njihova primjena omogućuje objektivnu eva-
luaciju učinkovitosti razvijenih modela.

Neka Q označava skup upita, a G galeriju. Za svaki upit q ∈ Q model generira rangiranu
listu slika iz galerije Rq = (r1, r2, . . . , r|G |) sortiranu prema odabranoj mjeri sličnosti tako
da je r1 primjer galerije koji je najsličniji upitu q. Nadalje, neka Pq ⊆ G označava skup svih
pozitivnih instanci galerije za dani upit q.

Kumulativna karakteristika podudaranja (engl. Cumulative Matching Characteris-

tic, CMC) ili Rank-k metrika točnosti podudaranja [313] mjeri vjerojatnost da se barem
jedan primjer galerije traženog identiteta p ∈ Pq pojavi med̄u prvih k elemenata rangirane
liste Rq. Neka je

Acck(q) =

1, ako Pq ∩{r1,r2, . . . ,rk} , /0

0, inače
, (6.6)

tada je

Rank-k =
1
|Q | ∑

q∈Q
Acck(q). (6.7)

U literaturi se najčešće navode Rank-1, Rank-5 i Rank-10 metrike [316, 317, 318, 319], pri
čemu je Rank-1 od osobite važnosti jer označava vjerojatnost da se primjer galerije ispravnog
identiteta nalazi na samom vrhu rangirane liste.
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Glavno ograničenje CMC metrike očituje se u situacijama kada galerija sadrži više po-
zitivnih primjera istog identiteta, kao što je slučaj i u SSMOT ReID skupu podataka. Za
uspješan rezultat (Acck(q) = 1) tada je dovoljno da se barem jedan pozitivan primjer galerije
pojavi unutar prvih k pozicija rangirane liste, dok se rang preostalih pozitivnih primjera u pot-
punosti može zanemariti. Posljedično, model može postići visoke vrijednosti ovih metrika
čak i ako je većina primjera ispravnog identiteta pri samom kraju rangirane liste. Upravo
zbog toga se u praksi CMC gotovo uvijek nadopunjuju mAP metrikom, koja u obzir uzima
sve pozitivne primjere i njihove pozicije unutar rangirane liste [313].

Kako bi se u obzir uzela kvaliteta cjelokupnog rangiranja, koristi se srednja prosječna
preciznost (engl. mean Average Precision, mAP). Za svaki upit q se prvo računa prosječna

preciznost (AP) dana s:

AP(q) =
1

|P (q)|

|G |

∑
i=1

Pq(i) · relq(i), (6.8)

pri čemu je

relq(i) =

1, ako je ri ∈ Pq

0, inače
(6.9)

dok je

Pq(i) =
1
i

i

∑
j=1

relq( j) (6.10)

preciznost izračunata na prvih i pozicija rang liste Rq. Potom se srednja prosječna preciznost
računa kao aritmetička sredina dobivenih AP vrijednosti:

mAP =
1
|Q | ∑

q∈Q
AP(q). (6.11)

6.3.2. Rezultati evaluacije

Na temelju definiranih metrika provedena je evaluacija implementiranih modela na testnom
skupu SSMOT ReID podataka. U ovom su pododjeljku prikazani dobiveni rezultati, zajedno
s odgovarajućom analizom i interpretacijom, kako bi se procijenila učinkovitost modela u
zadatku reidentifikacije plovila.

Tablica 6.1 prikazuje usporedbu osnovnih karakteristika triju korištenih ReID modela, pri
čemu svi koriste ulaze dimenzija 160×368. Uspored̄eni su broj značajki u izlaznom vektoru,
broj parametara modela te računska složenost izražena GFLOP vrijednostima, uz dvije vre-
menske mjere: (1) latenciju izračuna izlaza modela, odnosno prosječno vrijeme potrebno za
generiranje vektora značajki jedne ulazne slike, te (2) vrijeme pretrage, koje predstavlja pro-
sječno trajanje usporedbe jednog upita s galerijom od 10000 uzoraka. Mjerenja su provedena
na računalnom sustavu s Intel Core i7-9850H procesorom, 16 GB radne memorije i NVIDIA
Quadro RTX 3000 grafičkom karticom, uz korištenje operacijskog sustava Windows 11 Pro.
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Unatoč znatno manjem broju parametara i nižoj računskoj složenosti, OSNet modeli
imaju veću latenciju generiranja značajki. Navedeno se može pripisati arhitekturnim i im-
plementacijskim čimbenicima: OSNet modeli koriste specijalizirane blokove čija paralelna
struktura otežava optimizaciju i nije u potpunosti prilagod̄ena optimizacijama u postojećim
GPU bibliotekama, dok se ResNet oslanja na standardne konvolucijske operacije koje su
maksimalno optimizirane u okviru CUDA/cuDNN okruženja. S druge strane, prosječno vri-
jeme usporedbe vektora značajki upita s vektorima značajki galerije kod ResNet modela više
je od tri puta dulje zbog veće dimenzionalnosti njegovih izlaznih vektora.

Tablica 6.1: Usporedba karakteristika ReID modela.

Model Br. značajki Parametri GFLOPs Latencija
(ms)

Vrijeme pretrage
(ms)

OSNet 0.75 512 1 398 614 1.07 16.751 1.226
OSNet 1.0 512 2 282 368 1.82 16.479 1.226
ResNet50 2048 23 958 812 4.88 6.610 4.024

Tablica 6.2 prikazuje usporedne rezultate evaluacije odabranih ReID modela na SSMOT
ReID testnom podskupu s galerijom od 488 slika, i to u varijanti s unaprijed naučenim teži-
nama na ImageNet [125] skupu podataka te nakon dodatnog učenja na domenski specifičnom
SSMOT ReID skupu podataka.

Tablica 6.2: Usporedba performansi ReID modela s ImageNet težinama i nakon dodatnog
učenja na SSMOT ReID skupu podataka.

Model Skup podataka Sličnost mAP Rank-1 Rank-5 Rank-10

OSNet 0.75
ImageNet

kosinusna 57.2 82.0 94.3 96.7
euklidska 52.1 79.5 92.6 94.3

SSMOT ReID
kosinusna 88.0 97.5 100.0 100.0
euklidska 86.6 97.5 100.0 100.0

OSNet 1.0
ImageNet

kosinusna 58.7 85.2 94.3 98.4
euklidska 50.0 82.8 91.8 95.9

SSMOT ReID
kosinusna 88.7 95.9 100.0 100.0
euklidska 87.6 95.9 100.0 100.0

ResNet50
ImageNet

kosinusna 51.5 77.9 89.3 94.3
euklidska 50.6 77.0 89.3 95.9

SSMOT ReID
kosinusna 80.6 94.3 99.2 100.0
euklidska 80.4 92.6 98.4 100.0

U pravilu se pokazalo da korištenje kosinusne sličnosti pri pretrazi u galeriji daje bolje
rezultate u odnosu na euklidsku udaljenost, što je osobito izraženo kod modela evaluiranih
izravno s ImageNet težinama. Mogući razlog tome je što kosinusna sličnost naglašava kutnu
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sličnost izmed̄u vektora te je, za razliku od euklidske udaljenosti, manje osjetljiva na razlike
u njihovoj magnitudi koje ne moraju nužno ukazivati na različite identitete. Nadalje, do-
datno treniranje na SSMOT ReID skupu značajno poboljšava performanse svih modela, što
potvrd̄uje važnost prilagodbe na specifičnu domenu primjene.

OSNet modeli, koji su prilagod̄eni zadatku reidentifikacije, pokazuju bolje performanse
od općeg ResNet modela, a razlika je posebno izražena u mAP vrijednostima. Primjerice,
uz kosinusnu sličnost, OSNet 1.0 postiže mAP od 88.7, OSNet 0.75 od 88.0, dok ResNet50
ostvaruje 80.6, što jasno pokazuje prednost OSNet arhitekture. Navedeni rezultati ukazuju
na to da OSNet modeli dosljednije rangiraju pozitivne uzorke više u listi rezultata, što ih
čini pouzdanijima u scenarijima gdje je važno osigurati precizno rangiranje svih relevantnih
uzoraka. U kontekstu praćenja plovila, to znači da model visoko rangira sva pojavljivanja
istog plovila, što je vrlo važno kada se koraku asocijacije za danu putanju koriste značajke
plovila iz više prethodnih vremenskih trenutaka. S druge strane, Rank-1 metrika pokazuje
koliko često sustav odmah odabire ispravan identitet, što je ključno za izbjegavanje pogreš-
nih dodjela identiteta, budući da MOT algoritmi obično biraju najvjerojatnije kandidate za
nastavak praćenja. Od razmatranih modela, OSNet 0.75 postiže najbolju vrijednost Rank-1
metrike od 97.5.

Korištenjem zahtjevnijeg scenarija pretrage s proširenom galerijom koja sadrži 1138
slika, vrijednosti ReID metrika očekivano su lošije, budući da veći broj kandidata otežava
pronalazak pozitivnih primjera za dani upit. Tablica 6.3 prikazuje utjecaj proširenja gale-
rije na performanse odabranih ReID modela, pri čemu svi modeli koriste kosinusnu mjeru
sličnosti prilikom rangiranja. I ovdje vrijede prethodna zapažanja: OSNet arhitekture i dalje
nadmašuju ReSNet50, a domenski prilagod̄eni modeli imaju bolje performanse od modela
s težinama naučenim na ImageNet-u. U slučaju proširene galerije najbolje rezultate postiže
OSNet 1.0 treniran na SSMOT ReID skupu, s mAP vrijednošću od 82.8 i Rank-1 rezultatom
od 95.1. Slika 6.5 prikazuje šest najbolje rangiranih primjera (Top-6) iz proširene galerije
za dva upita (označena lijevo), dobivenih različitim ReID modelima. Rezultati OSNet 1.0
modela s kosinusnom mjerom sličnosti uspored̄eni su s onima temeljenima na euklidskoj
udaljenosti. Nadalje, prikazani su i TOP-6 rezultati OSNet 1.0 modela s ImageNet težinama,
kao i usporedbe s OSNet 0.75 te ResNet50 modelom. Zelenim okvirom označeni su pozitivni
primjeri čiji identitet odgovara identitetu upita, dok su crvenim okvirom označeni negativni
primjeri. Iz danih primjera jasno je vidljiv zaostatak ImageNet modela za onima treniranim
na SSMOT ReID podacima: kod drugog upita ImageNet model prvi pozitivan primjer stavlja
tek na šestu poziciju, dok se kod prvog upita uopće ne pojavljuje u Top-6 rezultata.

Dodatni primjeri upita i pripadajućih TOP-6 rangiranih rezultata iz proširene galerije,
dobivenih različitim modelima, prikazani su u Dodatku D.
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Tablica 6.3: Rezultati evaluacije ReID modela uz i bez proširenja galerije.

Model Skup podataka Proširena
galerija mAP Rank-1 Rank-5 Rank-10

OSNet 0.75
ImageNet

✗ 57.2 82.0 94.3 96.7
✓ 47.5 76.2 91.0 94.3

SSMOT ReID
✗ 88.0 97.5 100.0 100.0
✓ 81.7 94.3 100.0 100.0

OSNet 1.0
ImageNet

✗ 58.7 85.2 94.3 98.4
✓ 49.1 77.9 90.2 94.3

SSMOT ReID
✗ 88.7 95.9 100.0 100.0
✓ 82.8 95.1 99.2 100.0

ResNet50
ImageNet

✗ 51.5 77.9 89.3 94.3
✓ 41.8 72.1 84.4 88.5

SSMOT ReID
✗ 80.6 94.3 99.2 100.0
✓ 75.9 91.8 97.5 100.0

Slika 6.5: Šest najbolje rangiranih rezultata u galeriji za dva upita, dobivenih različitim
ReID modelima i mjerama sličnosti.
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7. VOc-SORT ALGORITAM PRAĆENJA S
POBOLJŠANIM PERFORMANSAMA U SLUČAJU
DUGOTRAJNIH OKLUZIJA

Iako detekcija i reidentifikacija predstavljaju temeljne komponente sustava za praćenje plo-
vila, one same po sebi nisu dovoljne za osiguravanje konzistentnog identiteta objekata kroz
vrijeme. Detekcija djeluje na razini pojedinačnih okvira videozapisa te daje informaciju o
trenutnom položaju i klasi plovila u danom okviru. S druge strane, reidentifikacija procje-
njuje sličnost plovila koja se pojavljuju u različitim okvirima videozapisa. No, bez dodatne
logike povezivanja opažanja plovila iz različitih okvira videozapisa, koja je dana algorit-
mom praćenja, nije moguće uspostaviti stabilan kontinutet identiteta plovila kroz vrijeme.
To je nužno jer bez takvog kontinuiteta sustav ne može izvući smislene informacije o putanji
i ponašanju pojedinih plovila, niti prepoznati odstupanja u njihovom ponašanju, što je od
presudne važnosti za nadzor, sigurnost i analizu pomorskog prometa.

Unatoč značajnom napretku postignutom u domeni automatskog praćenja, postojeći al-
goritmi i dalje se suočavaju s izazovima kada je objekt koji se prati odred̄eni vremenski
period zaklonjen. Dok vodeće metode praćenja obično mogu uspješno riješiti problem krat-
kotrajnih okluzija, dugotrajne okluzije i dalje ozbiljno narušavaju stabilnost praćenja te često
rezultiraju gubitkom putanja, pogrešnim dodjelama identiteta ili fragmentacijama putanja.
Problem dugotrajnih okluzija posebno je izražen u kontekstu praćenja plovila, gdje dinamika
scene obično uključuje med̄usobna zaklanjanja objekata različitih dimenzija. Manja plovila
mogu na dulje vrijeme potpuno nestati iza većih, čime se stvaraju dugotrajne okluzije koje
nadilaze mogućnosti postojećih algoritama.

Kako bi se prevladala ograničenja postojećih metoda, razvijen je VOc-SORT (Vessel

Occlusion SORT) algoritam za praćenje plovila, utemeljen na klasičnom pristupu praćenja
temeljenom na detekciji, ali proširen nizom ciljanih prilagodbi koje zajednički doprinose nje-
govoj većoj otpornosti na dugotrajne okluzije. Predloženi algoritam uvodi domensko znanje
u postupak odlučivanja o uklanjanju izgubljenih putanja te poboljšava proces asocijacije de-
tekcija i postojećih putanja korištenjem dvostupanjske metode povezivanja. U prvoj fazi
asocijacije vizualne se značajke kombiniraju s geometrijskima kako bi se pouzdano pridru-
žili jasni parovi putanja i detekcija, dok se u drugoj fazi za povezivanje preostalih, nejasnih
slučajeva integriraju vizualne i dinamičke značajke, čime se omogućuje robusna reasocija-
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cija u uvjetima okluzija, nestabilnih detekcija i naglih promjena kretanja. Time VOc-SORT
doprinosi ublažavanju odred̄enih ograničenja postojećih metoda i povećava stabilnost praće-
nja u zahtjevnim pomorskim scenama, zadržavajući pritom jednostavan i praktičan dizajn.
Duboki modeli koriste se isključivo za detekciju i izdvajanje vizualnih značajki, dok ostatak
algoritma ostaje minimalno računski zahtjevan čime se postiže uravnotežen odnos izmed̄u
računske učinkovitosti i kvalitete samog praćenja.

U ovom se poglavlju najprije predstavlja dizajn predloženog algoritma praćenja, pri čemu
se ističu i detaljno opisuju ključne prilagodbe u odnosu na postojeće metode te se daje pre-
gled osnovnih koraka samog algoritma. Nakon toga slijedi usporedba performansi predlo-
ženog algoritma s relevantnim postojećim metodama praćenja. Zatim se provodi ablacijska
studija u kojoj se analizira doprinos pojedinih komponenti algoritma - korištenog detektora,
modela za ekstrakciju vizualnih značajki, dodatnog kriterija za uklanjanje putanja te načina
asocijacije putanja i detekcija, zajedno s pripadnim pragovima vizualne sličnosti. Poglavlje
završava raspravom u kojoj se interpretiraju dobiveni rezultati i ističu prednosti, ali i ograni-
čenja predloženog algoritma.

7.1. Dizajn VOc-SORT algoritma

U nastavku je detaljno opisan predloženi VOc-SORT algoritam praćenja, zajedno sa svim
njegovim sastavnim koracima. Detaljno je pojašnjen način na koji se informacije dobivene
detektorom, modelom za ekstrakciju značajki i Kalmanovim filterom med̄usobno integri-
raju kako bi se osigurao stabilan kontinuitet identiteta plovila, čak i u uvjetima dugotrajnih
okluzija.

7.1.1. Ključne prilagodbe u odnosu na postojeće metode

Kako bi se smanjila osjetljivost algoritma praćenja na dugotrajne okluzije koje uzrokuju pre-
kid putanja i gubitak identiteta plovila, VOc-SORT uvodi niz modifikacija usmjerenih na
povećanje robusnosti sustava upravo u takvim situacijama. Naglasak je na omogućavanju
pouzdane ponovne identifikacije plovila nakon duljih razdoblja bez opažanja i na smanjenje
pogreške u koraku asocijacije. Sljedeće prilagodbe čine ključne razlike predloženog algo-
ritma u odnosu na postojeće pristupe.

1. Produljeno vrijeme zadržavanja izgubljenih putanja

U većini standardnih algoritama praćenja putanja se zadržava vrlo kratko vrijeme nakon
što joj je posljednji put bila pridružena detekcija, obično oko 30 uzastopnih okvira [67, 61,
66, 152] ili čak kraće [58, 27]. Prag zadržavanja putanja od 30 okvira može biti dovoljan
za kratkotrajne okluzije, ali je nedostatan u scenarijima praćenja plovila, gdje objekti često
ostaju zaklonjeni znatno dulje.
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Kako bi se omogućila pouzdana rekonstrukcija putanja plovila i nakon dugotrajnih pre-
kida vidljivosti, u VOc-SORT algoritmu znatno je produljeno vremensko razdoblje tijekom
kojega se putanja zadržava i u odsutnosti detekcija. Novi prag od 625 okvira odgovara raz-
doblju od 25 sekundi pri standardnoj frekvenciji od 25 FPS, što je značajan porast u odnosu
na otprilike 1.2 sekunde koliko dopuštaju standardne implementacije. Time algoritam pos-
taje tolerantniji na dulje okluzije i smanjuje se vjerojatnost nepotrebnog prekida putanja.

2. Dodatni kriterij upravljanja putanjama temeljen na domenskom znanju

Uz osnovno pravilo brisanja putanja nakon što im 625 uzastopnih okvira nije pridružena
detekcija, uveden je i dodatni kriterij koji koristi domensko znanje o uobičajenom kretanju
plovila u promatranoj luci. Ako putanja pet uzastopnih okvira ne dobije niti jednu pridruženu
detekciju, a posljednja detekcija koja joj je pridružena nalazi se u blizini lijevog ili desnog
ruba kadra, putanja se odmah uklanja. Ovakva situacija najčešće upućuje na to da je plovilo
napustilo vidno polje kamere, pa se bržim uklanjanjem takvih putanja sprječava bespotrebno
gomilanje izgubljenih putanja i smanjuje mogućnost pogrešnih asocijacija u narednim ok-
virima. Prije ranijeg uklanjanja provodi se provjera statičnosti putanje. Ako je plovilo bilo
praktički nepomično, putanja se ne uklanja nakon samo pet izostanaka detekcije. Time se
sprječava pogrešno uklanjanje putanja koje pripadaju privezanim plovilima u dijelu luke uz
lijevi rub kadra (kao na primjeru sa Slike 7.1), a koja privremeno mogu biti zaklonjena dru-
gim objektima.

Slika 7.1: Primjer privezanog plovila u luci smještenog uz lijevi rub kadra, koje će u
narednim okvirima biti zaklonjeno drugim prolaznim plovilom te zbog toga privremeno

neće biti detektirano.

3. Dvostupanjska VG-VD asocijacija detekcija i putanja

U okviru predloženog VOc-SORT algoritma uveden je postupak poboljšane dvostupanjske
asocijacije, nazvan VG-VD (Vizualno Geometrijska - Vizualno Dinamička) asocijacija,
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koji objedinjuje komplementarne izvore informacija pri povezivanju postojećih putanja i no-
vih detekcija.

Prva faza asocijacije objedinjuje IoU udaljenost, kao geometrijski pokazatelj prostornog
preklapanja detekcije i predvid̄anja dane putanje, te kosinusnu udaljenost vektora značajki
koji opisuju njihovu vizualnu sličnost. Nasuprot tome, druga faza asocijacije kombinira ko-
sinusnu udaljenost vizualnih značajki s Mahalanobisovom udaljenošću, koja opisuje koliko
je detekcija konzistentna s očekivanom dinamikom kretanja praćenog objekta, pri čemu se u
obzir uzima i nesigurnost modela kretanja. Takva kombinacija omogućuje uspješno povezi-
vanje i u slučajevima kada je prostorno preklapanje slabo ili nepostojeće, primjerice nakon
okluzija ili naglih pomaka, čime se nadopunjuju ograničenja prve faze i povećava ukupna
robusnost asocijacije.

Neka je T = {T1, . . . ,Tn} skup postojećih putanja, a Dt = {D1, . . . ,Dm} skup detekcija u
okviru t danog videozapisa. U nastavku se oznaka di, j koristi kao pokrata za d(Ti,D j), gdje
je d odabrana mjera udaljenosti, Ti ∈ T i D j ∈ D.

Prva faza asocijacije (VG)

Cijena pridruživanja C1(Ti, D j) detekcije D j putanji Ti u prvoj fazi asocijacije dana je s:

C1(Ti, D j) = d̂cos
i, j +dIoU

i, j , (7.1)

gdje je

d̂cos
i, j =

1
2dcos

i, j , ako je (dcos
i, j < θvis) ∧ (dIoU

i, j < θIoU)

1, inače
. (7.2)

Pritom dcos
i, j označava kosinusnu udaljenost vektora značajki detekcije D j i eksponencijalnog

pomičnog prosjeka vektora značajki detekcija pridruženih putanji Ti, a dIoU
i, j IoU udaljenost

predvid̄enog graničnog okvira putanje Ti i graničnog okvira detekcije D j. Pridruživanja za
koja vrijedi C1 > 0.8 odbacuju se jer ukazuju na izraženo vizualno ili geometrijsko odstupa-
nje. Prag θIoU = 0.7 služi kao dodatno ograničenje na preklapanja graničnih okvira, te isklju-
čuje parove s nedostatnom prostornom podudarnošću. S druge strane, θvis = 0.4 predstavlja
prag vizualne sličnosti kojim se odbacuju parovi sa znatno različitim vizualnim značajkama.
Navedeni pragovi odabrani su temeljem inicijalnih eksperimenata i kvalitativne procjene, te
ne predstavljaju nužno optimalne vrijednosti.

Druga faza asocijacije (VD)

U drugoj fazi asocijacije neuparene putanje i detekcije iz prve faze pokušavaju se još jednom
povezati, ali sada koristeći cijenu C2(Ti,D j) pridruživanja detekcije D j ∈ D putanji Ti ∈ T .
Ova cijena kombinira vizualnu udaljenost d∗

i, j
cos s konzistentnošću dinamike kretanja objekta

opisanom Mahalanobisovom udaljenošću dMhD
i, j , prema [62]. Funkcija cijene definirana je na
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sljedeći način:

C2(Ti,D j) =

∞, ako je dMhD
i, j > θMhD

λd∗
i, j

cos +(1−λ)dMhD
i, j , inače

, (7.3)

gdje je vizualna udaljenost d∗
i, j

cos dana s:

d∗
i, j

cos =

2, ako je dcos
i, j > θvis

dcos
i, j , inače

, (7.4)

pri čemu dcos
i, j , kao i u prvoj fazi, označava kosinusnu udaljenost vektora značajki detekcije

D j i eksponencijalnog pomičnog prosjeka vektora značajki detekcija pridruženih putanji Ti.
U implementaciji VOc-SORT algoritma koristi se λ = 0.98 kojim se naglasak stavlja na

vizualnu sličnost, dok se Mahalanobisova udaljenost koristi kao dopunski uvjet konzistent-
nosti. Granična vrijednost θMhD jednaka je vrijednosti 95%-tnog kvantila χ2 distribucije s
četiri stupnja slobode, koji iznosi 9.4877, te se koristi za odbacivanje pridruživanja detek-
cija putanjama koja nisu dinamički konzistentna s njihovim prethodnim kretanjem1. Prag
vizualne sličnosti, θvis, i u drugoj fazi asocijacije postavljen je na vrijednost 0.4.

Vrijednost dMhD
i, j iz jednadžbe (7.3) kvadrat je Mahalanobisove udaljenosti [138] koji

mjeri usklad̄enost nove detekcije D j i predvid̄anja za putanju Ti dobivenog Kalmanovim
filterom. Definirana je izrazom:

dMhD
i, j = (D j − ẑi)

T S−1
i (D j − ẑi), (7.5)

gdje je ẑi projekcija predvid̄enog stanja x̂i putanje Ti u prostor mjerenja, a Si pripadna matrica
kovarijance pogreške predvid̄anja u tom prostoru. ẑi i Si dane su sljedećim relacijama:

ẑi = Hx̂i, Si = HPiHT +R, (7.6)

pri čemu sve matrice dolaze iz Kalmanovog filtera: H je matrica koja preslikava vektor
stanja u prostor mjerenja, Pi je matrica kovarijance pogreške predvid̄enog stanja, a R matrica
kovarijance mjernog šuma detektora.

Mahalanobisova udaljenost omogućuje da se svako odstupanje detekcije od predvid̄enog
stanja putanje vrednuje u odnosu na sigurnost Kalmanovog filtera za dano predvid̄anje: ako
je model siguran u svoje predvid̄anje, prihvatljiva su samo mala odstupanja, a u slučajevima
veće nesigurnosti toleriraju se i veća odstupanja. Ovo je posebno važno u slučaju dugotrajnih
okluzija, tijekom kojih nisu dostupna nova mjerenja za korekciju vrijednosti Kalmanovog fil-

1Budući da se dinamička konzistentnost procjenjuje nad prostorom mjerenja koji obuhvaća četiri kompo-
nente graničnog okvira: dvije koordinate njegovog središta (xc,yc), širinu w i visinu h, test odbacivanja se
temelji na χ2 distribuciji s četiri stupnja slobode [320].
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PERFORMANSAMA U SLUČAJU DUGOTRAJNIH OKLUZIJA

tera, čime se njegova nesigurnost u dana predvid̄anja postupno povećava. Kako nesigurnost
raste, tako se povećava i područje prihvatljivih vrijednosti Mahalanobisove udaljenosti, što
algoritmu omogućuje da nakon dužeg izostanka detekcija prihvati detekciju koja je možda
znatnije udaljena od početnog predvid̄anja. Time se povećava vjerojatnost ispravne reidenti-
fikacije plovila kada se ono ponovno pojavi nakon duljeg perioda zaklonjenosti.

4. OSNet ReID model treniran na domeni plovila

Za ekstrakciju vizualnih značajki koristi se OSNet 1.0 ReID model, dodatno treniran na
SSMOT podskupu za reidentifikaciju kako bi se poboljšala kvaliteta dobivene vizualne repre-
zentacije dodatnom prilagodbom specifičnostima izgleda plovila u promatranoj luci. Time
se izbjegavaju ograničenja općih modela koji su najčešće treniranih na skupovima podataka s
pješacima, a zbog znatnih razlika u vizualnim obilježjima plovila i pješaka obično ne mogu
pouzdano razlikovati pojedina plovila. Dodatnim treniranjem ReID modela na domeni od
interesa postiže se veća diskriminativnost dobivenih značajki, što izravno doprinosi boljim
performansama algoritma praćenja te stabilnijem održavanju identiteta objekata koji se prate.

5. Veći prag tolerancije na udaljenost vizualnih značajki

Zbog mogućih promjena u izgledu plovila nakon okluzije (djelomična zaklonjenost, različita
orijentacija ili slično), koristi se nešto veća granična vrijednost vizualne udaljenosti od 0.4
za prihvatljiva pridruživanja novih detekcija i postojećih putanja, dok se u postojećim imple-
mentacijama popularnih algoritama uobičajeno primjenjuju niže vrijednosti od ≈ 0.2− 0.3
[61, 62, 63].

7.1.2. Opis koraka algoritma

Slijedi pregled svih koraka predloženog VOc-SORT algoritma, od inicijalne detekcije plovila
pa sve do koraka upravljanja putanjama. Kako bi se dobio što jasniji uvid u samu strukturu
i način rada algoritma, dijagramom toka na Slici 7.2 prikazani su odnosi med̄u navedenim
koracima i ključne odluke u procesu praćenja.

Detekcija

Za lokalizaciju i klasifikaciju plovila u svakom okviru videozapisa u fazi detekcije koristi
se YOLO11m [288] detektor, opisan u Poglavlju 5, koji je treniran na SSMOT skupu poda-
taka. Odabrani detektor generira granične okvire i pripadajuće vrijednosti pouzdanosti za sva
plovila prisutna u sceni, čime se osigurava početna informacija potrebna za daljnje korake
algoritma praćenja. Treniranje na SSMOT podskupu za detekciju omogućuje prilagodbu de-
tektora specifičnostima dinamike pomorskog prometa u splitskoj luci, čime se postiže veća
preciznost i robusnost detekcija u stvarnim uvjetima nadzora plovila u toj luci.
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Ekstrakcija vizualnih značajki

Za potrebe reidentifikacije plovila i poboljšanja robusnosti algoritama praćenja u uvjetima
dugotrajnih okluzija, nakon detekcije provodi se ekstrakcija vizualnih značajki svakog detek-
tiranog plovila. U tu svrhu koristi se OSNet 1.0 [228] reidentifikacijski model, koji je u Po-
glavlju 6 pokazao bolje performanse od općeg ResNet modela. Model je treniran na SSMOT
ReID skupu podataka, čime je osigurana prilagod̄enost karakteristikama plovila prisutnim u
stvarnim uvjetima nadzora. OSNet 1.0 generira 512-dimenzionalne diskriminativne vektore
značajki koji opisuju vizualni izgled svakog plovila, čime omogućuje razlikovanje plovila
vrlo sličnog izgleda i olakšava ponovno povezivanje putanja nakon razdoblja bez detekcija.

Predvid̄anje sljedeće pozicije objekta

Predvid̄anje budućeg položaja objekta važan je korak u algoritmima praćenja jer omogućuje
zadržavanje kontinuiteta putanja čak i u trenutcima kada detektor privremeno ne uspijeva lo-
kalizirati plovilo. U implementaciji predloženog VoC-SORT algoritma za ovaj korak koristi
se Kalmanov filter (KF) [26] s vektorom stanja

x = (xc, yc, w, h, ẋc, ẏc, ẇ, ḣ), (7.7)

gdje su (xc, yc) koordinate središta graničnog okvira, w i h njegova širina i visina, a kom-
ponente ẋc, ẏc, ẇ, ḣ predstavljaju stope promjene položaja i dimenzija graničnog okvira u
vremenu. Na ovaj način omogućena je istovremena procjena položaja i dinamike gibanja
objekta.

Predvid̄anje se temelji na linearnom modelu gibanja, pri čemu Kalmanov filter koristi
informacije o prethodnom stanju, kako bi procijenio očekivanu poziciju i veličinu plovila u
trenutnom okviru videozapisa (KF.predict na vizualizaciji sa Slike 7.2). To u ovom slučaju
nije ograničavajuće jer se promjene položaja plovila izmed̄u uzastopnih okvira videozapisa
obično odvijaju postepeno, bez naglih pomaka, pa ih linearni model može dovoljno dobro
aproksimirati. Čak i kada plovilo značajno mijenja smjer, ta se promjena odvija kroz veći
broj uzastopnih okvira, što omogućuje Kalmanovom filteru da je pravovremeno registrira i
prilagodi svoje procjene. U slučaju da detekcija izostane, predvid̄anje Kalmanovog filtera
koristi se za privremenu procjenu pozicije plovila, čime se sprječava trenutni prekid putanje
i omogućuje održavanje njezina kontinuiteta.

Asocijacija i korištene mjere sličnosti

Jedna od glavnih razlika predloženog VOc-SORT algoritma u odnosu na postojeće metode
je u načinu povezivanja detekcija s postojećim putanjama koji omogućuje robusnije praćenje
i u uvjetima dugotrajnih okluzija.
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Kako bi se nove detekcije iz trenutnog okvira videozapisa povezale s postojećim puta-
njama koristi se dvostupanjska VG-VD asocijacija predstavljena ranije u 7.1.1. U prvoj fazi
asocijacije cilj je utvrditi najpouzdanija pridruživanja izmed̄u detekcija i postojećih putanja,
odnosno parove koji su istovremeno prostorno blizu i vizualno vrlo slični. Za to se koristi
mad̄arski algoritam [140] s cijenom pridruživanja C1, definiranom jednadžbom (7.1), koja
spaja IoU udaljenost i kosinusnu udaljenost vizualnih značajki u jedinstvenu metriku teme-
ljem koje se donosi odluka o optimalnom povezivanju putanja i detekcija.

Detekcije i putanje koje nisu uspješno povezane u prvoj fazi, prosljed̄uju se u drugu fazu
asocijacije u kojoj ih se ponovno pokušava povezati mad̄arskim algoritmom, ali sada kom-
binirajući kosinusnu udaljenost vizualnih značajki s Mahalanobisovom udaljenošću u cijeni
pridruživanja C2 iz (7.3). U situacijama kada se objekt ponovno pojavljuje nakon okluzije,
IoU više ne pruža korisnu informaciju zbog izostanka preklapanja, a sama kosinusna uda-
ljenost nije dostatna jer vizualne značajke nakon okluzija ili u prisutnosti vizualno sličnih
plovila mogu postati nepouzdane i dovesti do većeg broja zamjena identiteta. Stoga druga
faza asocijacije kombinira kosinusnu udaljenost s većom graničnom vrijednošću 0.4, koja
omogućuje povezivanje istog objekta i u slučaju odred̄enih odstupanja u vizualnom izgledu,
zajedno s Mahalanobisovom udaljenošću koja provjerava je li nova detekcija dinamički us-
klad̄ena s očekivanim položajem putanje, čime se smanjuje rizik od pogrešnih dodjela iden-
titeta pri ponovnom pojavljivanju objekta nakon okluzije. Time se postiže ravnoteža: prva
faza sprječava pogrešne asocijacije, a druga faza smanjuje fragmentaciju putanja nakon du-
gotrajnih okluzija.

Nakon dvije faze asocijacije u kojima se postojećim putanjama nastoje pridružiti nove
detekcije, slijedi dodatna faza asocijacije u kojoj se preostale neuparene detekcije pokušavaju
povezati s nepotvrd̄enim putanjama koje su još u probnom razdoblju. U ovoj fazi takod̄er se
primjenjuje mad̄arski algoritam, koristeći istu funkciju cijene pridruživanja C1 kao i u prvoj
fazi asocijacije, ali s duplo manjom graničnom vrijednosti θvis.

Upravljanje putanjama

Upravljanje putanjama obuhvaća ažuriranje stanja postojećih putanja kojima je uspješno pri-
družena nova detekcija plovila, uklanjanje neaktivnih putanja te inicijalizaciju novih putanja
za neuparene detekcije.

Ažuriranje stanja putanja

Kada je putanji Ti ∈ T uspješno pridružena detekcija D j ∈ Dt plovila iz trenutnog okvira Ft

danog videozapisa, provodi se korak korekcije Kalmanovog filtera (KF.update na Slici 7.2),
pri čemu se procjena stanja putanje i pripadajuća matrica kovarijance pogreške procjene ažu-
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riraju temeljem novog mjerenja D j. Potom se ažuriraju i reidentifikacijske značajke putanje
(features.update na Slici 7.2). Kao vizualna informacija putanje Ti koristi se eksponen-
cijalni pomični prosjek:

et
i = αet−1

i +(1−α) f j, (7.8)

gdje je f j vektor značajki nove detekcije D j koja je u okviru Ft pridružena putanji Ti, a
α = 0.9 faktor izglad̄ivanja. Eksponencijalni pomični prosjek integrira vizualne informacije
sadržane u uzastopnim okvirima videozapisa smanjujući šum prisutan u detekcijama, čime
se poboljšava kvaliteta asocijacije uz smanjenu vremensku potrošnju [62].

Uklanjanje putanja

Ako broj uzastopnih okvira u kojima putanji Ti ∈ T nije pridružena detekcija premaši zadani
prag max_age = 625, objekt se smatra izgubljenim, te se putanja uklanja iz skupa T . Na-
dalje, u slučaju da tijekom 5 uzastopnih okvira putanji nije pridružena niti jedna detekcija, a
posljednja detekcija pridružena toj putanji nalazi se u neposrednoj blizini lijevog ili desnog
ruba okvira te se ne radi o statičnom objektu koji bi mogao predstavljati plovilo privezano u
luci, putanja se uklanja odmah, bez čekanja isteka praga max_age.

Inicijalizacija putanja

Kada se u okviru pojavi detekcija koja nije pridružena niti jednoj postojećoj putanji, ona se
prvo dodaje u skup probnih, nepotvrd̄enih putanja U. Te putanje služe kao privremeni kan-
didati te još ne ulaze u glavni skup putanja T . Ako se istoj putanji iz U detekcija uspješno
pridruži i u sljedećem uzastopnom okviru, putanja se smatra potvrd̄enom i inicijalizira se kao
nova aktivna putanja u T ako je pouzdanost detekcije veća od α = 0.6. Suprotno tome, ako
u idućem okviru ne dod̄e do uspješnog pridruživanja, probna se putanja uklanja iz skupa U.
Na taj se način osigurava da se nova putanja kreira tek kada postoji potvrda pojave objekta
u dva uzastopna okvira, čime se smanjuje mogućnost stvaranja putanja temeljenih na lažno
pozitivnim detekcijama.

7.2. Usporedba performansi predloženog algoritma s
postojećim metodama

Procjena učinkovitosti predloženog VOc-SORT algoritma provedena je usporednom anali-
zom s reprezentativnim algoritmima temeljenim na detekciji, koji predstavljaju vodeći pris-
tup rješavanju zadatka praćenja više objekata [147, 148]. Cilj ovog potpoglavlja je prikazati
u kojoj mjeri predložene inovacije doprinose poboljšanju performansi u odnosu na postojeće
metode, posebno u zahtjevnim scenarijima dugotrajnih okluzija.

Usporedba je provedena nad skupom algoritama čije su referentne implementacije dos-
tupne u BoxMOT okviru [321], standardiziranom sustavu otvorenog koda koji okuplja suvre-
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Slika 7.2: Dijagram toka predloženog VOc-SORT algoritma.

mene predstavnike algoritama praćenja više objekata. Primjena ovog okvira omogućuje eva-
luaciju svih metoda u jedinstvenom i reproducibilnom eksperimentalnom okruženju, čime se
uklanjaju implementacijske razlike i osigurava objektivna usporedba njihovih performansi.
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7.2.1. Korištene metrike

Za evaluaciju različitih metoda praćenja korišten je standardizirani evaluacijski okvir Trac-
kEval [322], koji omogućuje ujednačenu i reproducibilnu procjenu performansi algoritama
na temelju široko prihvaćenih metrika, uključujući CLEAR MOT [153] metrike MOTA i
MOTP, HOTA metriku [154], IDF1 metriku [155], te IDSW [142] metriku. Detaljan opis
navedenih metrika dan je u Poglavlju 2, u dijelu 2.4.1.

Uz prethodno navedene metrike, koristi se i FPS (engl. Frames Per Second) mjera, koja
daje uvid u brzinu izvod̄enja algoritma praćenja. Pri tome je važno naglasiti da vrijeme
potrebno za detekciju nije uključeno u FPS, jer su detekcije za sve videozapise unaprijed
generirane odabranim detektorom, te se tijekom evaluacije samo učitavaju bez ponovnih
izračuna. Na taj se način ubrzava proces evaluacije i omogućuje konzistentna usporedba
performansi različitih algoritama praćenja.

Kako bi se ocijenila uspješnost modela u ponovnoj identifikaciji objekata nakon oklu-
zije, uvodi se OKL+ metrika. Za njezin izračun najprije je potrebno za svaku anotiranu oklu-
ziju identificirati posljednju dostupnu detekciju zaklonjenog plovila u zadanom vremenskom
prozoru prije početka stvarne okluzije, a zatim i prvu ponovnu detekciju u odgovarajućem
prozoru nakon okvira koji označuje njezin stvarni završetak. Uvod̄enje ovih prozora nužno
je zbog ograničenja detekcijskih modela, koji često ne uspijevaju pouzdano detektirati dje-
lomično zaklonjene objekte neposredno prije ulaska u okluziju i neposredno nakon izlaska
iz nje. U ovoj analizi primjenjuje se vremenski prozor od 75 okvira prije i 75 okvira nakon
okluzije, čime se osigurava dovoljna tolerancija na izostanke detekcija uslijed ograničenja
detektora. Vrijednost OKL+ metrike odgovara broju uspješno reidentificiranih objekata na-
kon okluzije, pri čemu se reidentifikacija smatra uspješnom ako je objekt detektiran i prije i
nakon stvarnog razdoblja okluzije te ako je algoritam praćenja zadržao konzistentan identi-
fikator u oba promatrana detekcijska trenutka.

7.2.2. Rezultati evaluacije

Kako bi se uklonile razlike u performansama koje proizlaze iz korištenja različitih detektora
i ekstraktora vizualnih značajki, svi algoritmi koriste iste modele za detekciju i ekstrakciju
značajki kao i predloženi VOc-SORT algoritam. Konkretno, svi modeli kao polaznu točku
praćenja koriste iste detekcije dobivene YOLO11m detektorom treniranim na SSMOT skupu
podataka za detekciju. U slučajevima kada algoritam praćenja koristi vizualne značajke, nji-
hova ekstrakcija provodi se pomoću OSNet 1.0 modela treniranog na SSMOT ReID skupu
podataka. Osim toga, za sve algoritme produljeno je vrijeme prije brisanja izgubljenih puta-
nja na 625 okvira kako bi im se pružila mogućnost uspješnog nastavka praćenja objekata i
nakon duljih okluzija.
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Kvantitativna analiza

U Tablici 7.1 prikazani su rezultati kvantitativne evaluacije predloženog algoritma i oda-
branih postojećih metoda praćenja na SSMOT videozapisima. Simbol "✓" u stupcu ReID

označuje da navedeni algoritam koristi reidentifikacijski model za ekstrakciju vizualnih zna-
čajki, dok simbol "✗" naznačuje da algoritam ne koristi vizualne značajke. Nadalje, strelica
"↑" uz nazive pojedinih metrika ukazuje na to da su poželjne veće vrijednosti te metrike,
dok strelica "↓" označuje da su povoljnije niže vrijednosti. Evaluacija je provedena na ra-
čunalnom sustavu s procesorom Intel Core i7-9850H, 16 GB RAM-a i grafičkom karticom
NVIDIA Quadro RTX 3000.

Tablica 7.1: Usporedna analiza performansi predloženog VOc-SORT algoritma i postojećih
metoda praćenja na SSMOT skupu videozapisa.

Tracker ReID HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)
FPS
(↑)

ByteTrack [60] ✗ 82.55 92.51 89.30 80 89.63 7 201
BoT-SORT [61] ✓ 82.80 92.95 89.83 61 88.89 10 14
StrongSORT [62] ✓ 83.83 92.21 89.78 371 91.59 12 13
OC-SORT [27] ✗ 82.72 92.37 89.89 122 89.58 13 188
Deep OC-SORT [152] ✓ 82.59 92.61 89.88 95 89.03 7 15
BoostTrack [63] ✓ 65.79 56.49 89.70 54 69.63 4 47

VOc-SORT ✓ 85.57 93.03 89.82 42 94.38 25 14

Predloženi VOc-SORT postiže najviše vrijednosti HOTA (85.57), MOTA (93.03) i IDF1
(94.38) metrika, čime nadmašuje ostale metode praćenja prema ključnim identifikacijskim
i asocijacijskim metrikama. U pogledu točnosti lokalizacije objekata (MOTP), svi algo-
ritmi ostvaruju slične vrijednosti, pri čemu najbolji rezultat postiže OC-SORT (89.89). VOc-
SORT postiže najmanji broj zamjena identiteta (42) tijekom praćenja te ostvaruje znatno
veći broj uspješnih reidentifikacija nakon okluzije (25/31) u odnosu na ostale algoritme. Po
pitanju brzine izvod̄enja, s najvišom vrijednosti FPS ističu se ByteTrack (201) i OC-SORT
(188) algoritmi, dok VOC-SORT postiže 14 FPS, što je usporedivo s ostalim metodama koje
koriste vizualnu reidentifikaciju. Generalno najslabije performanse pokazuje BoostTrack, s
HOTA vrijednošću od tek 65.79 i MOTA vrijednošću od 56.49.

Prikaz na Slici 7.3 (a) uspored̄uje odabrane algoritme koristeći HOTA i IDF1 metrike, pri
čemu veličina markera odražava vrijednost MOTA metrike. VOc-SORT algoritam se vidno
izdvaja po vrijednostima HOTA i IDF1 metrika, slijedi ga StrongSORT algoritam koji se
takod̄er izdvaja po vrijednostima ovih metrika, dok su preostali algoritmi grupirani u užem
rasponu vrijednosti. S druge strane, na Slici 7.3 (b) prikazan je odnos izmed̄u IDF1 me-
trike i broja zamjena identiteta (IDSW), pri čemu veličina markera označava broj uspješnih
reidentifikacija nakon okluzije (OKL+). Riječ je o skupini izdvojenih identitetnih metrika
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(a) (b)

Slika 7.3: Vizualna usporedba performansi odabranih algoritama praćenja.
(a) HOTA-IDF1-MOTA: x-os HOTA, y-os IDF1, veličina markera proporcionalna MOTA
(zbog preglednosti izostavljen BoostTrack algoritam koji postiže znatno lošije vrijednosti

odabranih metrika), (b) IDF1-IDSW-OKL+: x-os IDF1, y-os IDSW, veličina markera
proporcionalna OKL+.

koje zajednički opisuju stabilnost i konzistentnost održavanja identiteta plovila kroz vrijeme.
VOc-SORT ostvaruje najmanji broj IDSW te najveći broj uspješnih reidentifikacija, uz naj-
višu IDF1 vrijednost, čime se jasno izdvaja od ostalih algoritama. StrongSORT postiže
visoku vrijednost IDF1, ali uz znatno veći broj zamjena identiteta, dok BoostTrack pokazuje
najslabiju identitetsku stabilnost.

Kako bi se dobio uvid u sposobnost pojedinih algoritama praćenja da ispravno reidentifi-
ciraju objekt nakon okluzije ovisno o njezinom trajanju, na Slici 7.4 prikazan je broj uspješ-
nih reidentifikacija razvrstan po trima kategorijama okluzija definiranih u Poglavlju 4, dio
4.4.3: kratke, srednje duge i duge. Prikaz obuhvaća sve razmatrane algoritme i omogućuje
izravan uvid u njihove performanse za svaku od navedenih kategorija okluzija. U katego-
riji kratkih okluzija broj uspješnih reidentifikacija kreće se od četiri (BoostTrack) do devet
(StrongSORT i VOc-SORT), od ukupno 13 slučajeva. Kod srednje dugih okluzija većina
algoritama ostvaruje jednu do dvije uspješne reidentifikacije, dok je kod dugih okluzija taj
broj u rasponu od nula do tri. Izuzetak je predloženi VOc-SORT algoritam, koji u srednje
dugim ostvaruje sedam uspješnih reidentifikacija, a u dugim njih devet.

Kvalitativna analiza

U okviru evaluacije prikazana su i četiri vizualna primjera ponašanja odabranih algoritama,
i to predloženog VOc-SORT algoritma te sljedeća tri algoritma koja su najbolje rangirana
prema vrijednosti HOTA metrike: StrongSORT, BoT-SORT i OC-SORT. Prvi primjer, pri-
kazan na Slici 7.5, odnosi se na scenu u kojoj je putnički brod tijekom duljeg vremenskog
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Slika 7.4: Usporedba broja uspješnih reidentifikacija po kategorijama okluzija predloženog
VOc-SORT algoritma i postojećih metoda.

razdoblja od gotovo jedanaest sekundi u potpunosti zaklonjen trajektom. VOc-SORT i Stron-
gSORT uspješno rekonstruiraju ispravan identitet putničkog broda nakon završetka okluzije.
Med̄utim, StrongSORT pri izlasku iz okluzije, dok je putnički brod još djelomično zaklonjen,
privremeno dodjeljuje pogrešan identitet, da bi mu tek nakon potpunog otkrivanja ponovno
pridružio ispravan. Nasuprot tome, OC-SORT i BoT-SORT ne uspijevaju povratiti originalni
identitet putničkog broda nakon okluzije. S druge strane, StrongSORT i OC-SORT pogrešno
mijenjaju identitet trajekta nakon što je u prolazu djelomično zaklonjen katamaranom, dok
VOc-SORT i BoT-SORT ispravno održavaju konzistentan identitet.

U preostalim vizualnim primjerima (Slike 7.6, 7.7, 7.8) zbog bolje preglednosti prikazani
su isključivo identiteti plovila. Oznake klasa više nisu istaknute, iako se granični okviri i
dalje razlikuju bojama prema pripadnosti pojedinoj klasi. Budući da su identiteti primarni
pokazatelj uspješnosti praćenja, dok su klase rezultat detekcijskog modela, ovakav prikaz
omogućuje lakšu usporedbu koliko dobro pojedini algoritmi održavaju ispravne identitete
plovila kroz vrijeme. Na slikama je za svaki od algoritama praćenja prikazan niz različitih
trenutaka iz danog videozapisa, koji su označenih brojevima 1-5 (Slika 7.6), odnosno 1-4
(Slika 7.7 i Slika 7.8).

Slika 7.6 prikazuje scenu iz SSMOT_9 videozapisa u kojoj jedno plovilo, s početno dodi-
jeljenim identitetom 7, uzastopno ulazi u dvije okluzije: prvo u kratku okluziju u trajanju od
0.40 sekundi, a potom u srednje dugu okluziju od 6.91 sekundi. Nakon djelomične zaklonje-
nosti i preklapanja okvira plovila 7 s jedrilicom identiteta 2 (odnosno 12 u slučaju OC-SORT
algoritma), u trenutku t = 2 VOc-SORT i BoT-SORT algoritmi uspijevaju održati ispravan
identitet plovila, dok OC-SORT i StrongSORT plovilu 7 dodjeljuju novi, pogrešni identitet.
Nakon toga plovilo inicijalnog identiteta 7 ulazi u kratku okluziju s bijelom jedrilicom iden-
titeta 4. Pri izlasku iz okluzije u trenutku t = 3 jedino VOc-SORT uspijeva plovilu ponovno
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VOc-SORT StrongSORT

OC-SORT BoT-SORT

Slika 7.5: Primjer ponašanja odabranih algoritama praćenja (VOc-SORT, StrongSORT,
OC-SORT i BoT-SORT) na dijelu SSMOT_9 videozapisa s med̄usobnim preklapanjem

plovila i primjerom duge okluzije putničkog broda trajektom.

dodijeliti identitet jednak onome prije okluzije, dok preostali algoritmi u tome ne uspije-
vaju. Sličan obrazac se ponavlja i sa sljedećom, srednje dugom okluzijom: jedino je kod
VOc-SORT algoritma identitet plovila u trenutku t = 5 nakon okluzije plovila katamaranom,
jednak identitetu netom pred okluziju u trenutku t = 4.
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Slika 7.6: Primjer ponašanja odabranih algoritama praćenja (VOc-SORT, StrongSORT,
OC-SORT i BoT-SORT) na sceni iz SSMOT_9 videozapisa, u kojoj isto plovilo najprije ulazi
u kratku okluziju u trajanju od 0.40 s (iza bijele jedrilice), a zatim u srednje dugu okluziju u

trajanju od 6.91 s (iza katamarana).

Na Slici 7.7 prikazana je scena obilježena višestrukim mimoilaženjima i jednom potpu-
nom okluzijom. Algoritam VOc-SORT uspješno održava identitete plovila 7 i 8 u prikazanoj
sceni, čak i u trenutku t = 4 njihova mimoilaženja. Nasuprot tome, kod algoritama BoT-
SORT i OC-SORT u trenutku t = 4 dolazi do pogrešne dodjele identiteta: plovilu kojemu
je u t = 1 bio pridružen identitet 7 dodijeljen je identitet plovila 8, s kojim se mimoilazilo.
Nadalje, plovilo identiteta 7 u t = 2 (identitet 22 u slučaju OC-SORT algoritma), koje ulazi
u okluziju s jedrilicom, jedino VOc-SORT uspješno ponovno identificira u trenutku t = 3.

Posljednji primjer, prikazan na Slici 7.8, obuhvaća scenu u kojoj je potrebno pratiti više
vizualno gotovo identičnih plovila (trening jedrilica) koja se u kretanju med̄usobno prek-
lapaju. U trenutku t = 4 detektirane su tri od četiri jedrilice; nije detektirana ona koja je
gotovo potpuno zaklonjena. Za te tri vidljive jedrilice najtočnije identitete dodjeljuje algori-
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3.

Slika 7.7: Prikaz vizualno zahtjevne scene iz videozapisa SSMOT_6 obilježene
preklapanjima, djelomičnim zaklonjenostima i mimoilaženjima sličnih plovila, uz jednu

srednje dugu okluziju u trajanju od 3.24 s.

tam StrongSORT. Algoritam VOc-SORT zamjenjuje redoslijed identiteta 4 i 9 te u trenutku
t = 3 pogrešno uvodi novi identitet 13. OC-SORT u t = 4 takod̄er pogrešno dodjeljuje novi
identitet (11). Najveće odstupanje pokazuje BoT-SORT, koji u trenutcima t = 3 i t = 4 po-
grešno uvodi tri nova identiteta (17, 18 i 13) te identitet 5 pridružuje neispravnom objektu.
Suprotno tome, jedino VOc-SORT uspijeva održati konzistentan identitet plovila označenog
žutim okvirom (identitet 7 u trenutku t = 1) kroz sva četiri prikazana trenutka.
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Slika 7.8: Primjer scene iz videozapisa SSMOT_12 koja zahtijeva praćenje vizualno gotovo
identičnih plovila s med̄usobnim preklapanjima.

7.3. Ablacijska studija

Ablacijska studija provodi se kako bi se ispitao utjecaj pojedinih komponenti predloženog
algoritma na ukupne performanse praćenja. Kao polazna točka koristi se implementacija
VOc-SORT algoritma opisana u 7.1. Sustavnim uklanjanjem, zamjenom ili modificiranjem
pojedinih elemenata algoritma procjenjuje se njihov utjecaj na ukupnu učinkovitost praće-
nja, pri čemu se posebna pozornost posvećuje njihovoj sposobnosti uspješne reidentifikacije
plovila nakon srednje dugih i dugih okluzija.

7.3.1. Utjecaj korištenog detektora

U okviru ove ablacijske studije prvo se ispituje utjecaj korištenog detektora na učinkovitost
VOc-SORT algoritma. U Tablici 7.2 prikazani su rezultati evaluacije algoritma pri primjeni
triju varijanti YOLO11 [288] detektora (YOLO11n, YOLO11s i YOLO11m), treniranih na
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SSMOT skupu podataka za detekciju, kako je opisano u poglavlju 5, dio 5.2.3. Na testnom
skupu SSMOT detekcijskog podskupa, detektor YOLO11m postigao je najvišu vrijednost
detekcijske metrike mAP50:95 od 0.829, zatim slijedi YOLO11s s vrijednošću 0.799, dok
YOLO11n ostvaruje najnižu vrijednost od 0.764. U skladu s tim, YOLO11m ostvaruje i
najbolje rezultate kvantitativnih metrika praćenja na SSMOT videozapisima, nakon njega
slijedi YOLO11s, dok najmanji model YOLO11n postiže najslabije rezultate.

Tablica 7.2: Usporedba performansi algoritma praćenja pri korištenju različitih varijanti
YOLO11 detektora.

HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)

YOLO11m 85.57 93.03 89.82 42 94.38 25
YOLO11s 83.92 91.72 89.54 45 93.18 24
YOLO11n 81.34 89.19 88.78 77 90.73 24

Na Slici 7.9 prikazana je usporedba broja uspješnih reidentifikacija za tri spomenute
varijante YOLO11 detektora u odnosu na tri kategorije duljine okluzije. U kategoriji krat-
kih okluzija model praćenja koji koristi YOLO11n detektor ostvaruje najveći broj uspješnih
reidentifikacija, njih 11, dok kod srednje dugih i dugih okluzija bilježi slabije rezultate u
odnosu na preostala dva detektora. YOLO11s i YOLO11m jednako su uspješni u reiden-
tifikaciji plovila nakon kratkih i srednje dugih okluzija, dok YOLO11m ostvaruje najbolji
rezultat kada su u pitanju duge okluzije.
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Slika 7.9: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija pri korištenju različitih varijanti YOLO11 detektora.
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7.3.2. Utjecaj integracije vizualnih ReID značajki s
prostorno-dinamičkim informacijama

U ovom dijelu provedena je ablacijska analiza utjecaja integracije vizualnih ReID značajki
u postupku asocijacije unutar predloženog algoritma praćenja. Analiza je usredotočena na
ispitivanje doprinosa vizualnih značajki u prvoj (A1) i drugoj (A2) fazi asocijacije, pri čemu
su razmatrane različite konfiguracije u kojima su te značajke uključene ("✓") ili izostavljene
("✗"). Usporedba je provedena uz zadržavanje istih postavki ostalih komponenti sustava, s
ciljem izoliranja utjecaja vizualnih informacija na performanse praćenja, osobito u kontekstu
očuvanja identiteta nakon okluzija.

Rezultati prikazani u Tablici 7.3 jasno ukazuju na utjecaj integracije vizualnih ReID zna-
čajki u pojedinim fazama asocijacije na ukupne performanse praćenja. Najbolji rezultati
ostvareni su u konfiguraciji u kojoj su vizualne značajke uključene u obje faze asocijacije,
pri čemu su postignute najviše vrijednosti HOTA, MOTA i IDF1 metrika, uz istodobno naj-
manji broj zamjena identiteta. Izostavljanje vizualnih značajki u prvoj fazi asocijacije, uz
njihovo zadržavanje u drugoj fazi, rezultira tek umjerenim smanjenjem globalnih metrika
praćenja, dok se pritom zadržava visok broj uspješno reidentificiranih plovila nakon oklu-
zija. Suprotno tome, konfiguracije u kojima su vizualne značajke izostavljene u drugoj fazi
asocijacije bilježe izraženije pogoršanje performansi, osobito u pogledu očuvanja identiteta
i uspješnosti reidentifikacije nakon okluzija. Najslabiji rezultati ostvareni su u slučaju kada
se asocijacija temelji isključivo na prostorno-dinamičkim informacijama.

Tablica 7.3: Usporedba performansi algoritma praćenja pri različitim konfiguracijama
integracije vizualnih ReID značajki u prvoj (A1) i drugoj (A2) fazi asocijacije.

A1 A2 HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)

✓ ✓ 85.57 93.03 89.82 42 94.38 25
✗ ✓ 84.41 93.02 89.83 48 92.54 26
✓ ✗ 83.48 92.97 89.83 57 90.98 15
✗ ✗ 83.21 92.97 89.83 62 90.56 16

Na Slici 7.10 prikazana je uspješnost reidentifikacije plovila nakon okluzija različitog
trajanja za različite konfiguracije integracije vizualnih ReID značajki po fazama asocijacije
VOc-SORT algoritma. Iz prikazanih rezultata vidljivo je da konfiguracije koje uključuju vi-
zualne ReID značajke u drugoj fazi asocijacije ostvaruju veći broj uspješnih reidentifikacija u
svim kategorijama trajanja okluzije. Posebno je izražena razlika u slučaju dugotrajnih oklu-
zija, gdje konfiguracije s uključenim vizualnim značajkama u drugoj fazi zadržavaju znatno
višu uspješnost u odnosu na konfiguraciju koje se oslanjaju samo na prostorno-dinamičke in-
formacije, te na konfiguraciju koja vizualnu informaciju koristi samo u prvoj fazi asocijacije.
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Slika 7.10: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija pri različitim konfiguracijama integracije vizualnih ReID značajki u prvoj i drugoj

fazi asocijacije.

Primjer prikazan na Slici 7.11 ilustrira kako izostavljanje vizualnih informacija u prvoj
fazi asocijacije može utjecati na stabilnost praćenja. Slika prikazuje četiri trenutka praćenja,
t = 1, . . . ,4, iz videozapisa SSMOT_6. U gornjem retku prikazana je konfiguracija u kojoj se
u prvoj fazi asocijacije koriste isključivo geometrijske informacije temeljene na preklapanju
graničnih okvira, dok druga faza asocijacije kombinira vizualne značajke i dinamičke infor-
macije kvantificirane Mahalanobisovom udaljenošću. Donji redak prikazuje konfiguraciju
u kojoj se vizualne značajke koriste u obje faze. U trenutku t = 2 plovilo s identitetom 9
privremeno nestaje iza kruzera. Isprekidani granični okvir označava izgubljeni objekt čija
putanja još nije uklonjena iz sustava praćenja, dok strelica prikazuje procijenjeni smjer kre-
tanja objekta dobiven predvid̄anjem Kalmanovog filtera. U sljedećem trenutku, t = 3, drugo
plovilo s identitetom 11 približava se području u kojem je plovilo identiteta 9 prethodno iz-
gubljeno. U konfiguraciji koja ne koristi vizualne informacije u prvoj fazi asocijacije dolazi
do pogrešne dodjele identiteta u trenutku t = 4, pri čemu se identitet 9 pridružuje plovilu koje
je prethodno imalo identitet 11. Suprotno tome, konfiguracija koja koristi vizualne značajke
u prvoj fazi asocijacije uspješno zadržava ispravan identitet praćenog plovila.

7.3.3. Utjecaj korištenog modela za ekstrakciju vizualnih značajki

Kako bi se ispitao utjecaj odabranog modela za ekstrakciju vizualnih značajki na perfor-
manse praćenja, s posebnim naglaskom na održavanje stabilnih identiteta objekata, prove-
dena je ablacijska analiza u kojoj se uspored̄uje pet različitih konfiguracija ReID modela
unutar VOc-SORT algoritma. U analizi su razmotrene dvije arhitekture za ekstrakciju zna-
čajki: ResNet50 [180] i OSNet 1.0 [228].
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Slika 7.11: Primjer koji ilustrira utjecaj izostavljanja vizualnih informacija u prvoj fazi
asocijacije na performanse praćenja.

ResNet50 predstavlja opći model duboke neuronske mreže, izvorno razvijen za zadatke
klasifikacije slika, koji se u praksi često koristi i kao osnova za ekstrakciju vizualnih zna-
čajki u ReID zadacima. U tom kontekstu uspored̄ene su dvije varijante ResNet50 modela:
model treniran na općem klasifikacijskom skupu podataka ImageNet [125] te model dodatno
treniran na domenski specifičnom SSMOT ReID skupu podataka. S druge strane, OSNet 1.0
je arhitektura posebno dizajnirana za zadatak reidentifikacije objekata. Za ovaj model ana-
lizirane su tri varijante treniranja: model treniran na SSMOT ReID skupu podataka, model
treniran na ImageNet skupu podataka te model treniran na MSMT17 [323] skupu podataka za
reidentifikaciju pješaka. Problem reidentifikacije pješaka najzastupljeniji je u ovom području
istraživanja, zbog čega su skupovi podataka iz te domene najbrojniji i najčešće korišteni. Po-
sljedično, modeli trenirani na podacima za reidentifikaciju pješaka, kao i na ImageNet skupu
podataka, često se primjenjuju kao univerzalni ekstraktori značajki u zadacima praćenja više
objekata, osobito kada domenski specifični ReID podaci nisu dostupni.

U Tablici 7.4 prikazani su rezultati evaluacije VOc-SORT algoritma pri korištenju razli-
čitih modela za ekstrakciju vizualnih značajki te različitih skupova podataka na kojima su ti
modeli trenirani. Najbolje performanse pokazuje OSNet 1.0 model treniran na SSMOT ReID
skupu podataka s najvećim vrijednostima HOTA (85.57), MOTA (93.03) i IDF1 (94.38) me-
trika, najmanjim brojem promjena identiteta (42) te znatno više ispravnih reidentifikacija
nakon okluzija (25) od ostalih modela. Varijante OSNet 1.0 modela trenirane na ImageNet i
MSMT17 skupovima podataka ostvaruju niže vrijednosti HOTA i IDF1 metrika te veći broj
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promjena identiteta u odnosu na model treniran na SSMOT ReID skupu podataka, neznatno
niže vrijednosti MOTA metrike, te usporedive vrijednosti MOTP metrike. Kod ResNet50 ar-
hitekture, razlike izmed̄u modela treniranih na različitim podacima manje su izražene. Model
treniran na domenski specifičnom SSMOT skupu podataka ostvaruje nešto bolje rezultate u
odnosu na ImageNet varijantu u metrikama povezanim s konzistentnošću identiteta (IDSW
i IDF1). Med̄utim, obje ResNet50 konfiguracije ostvaruju slabije ukupne rezultate u us-
poredbi s OSNet 1.0 modelom treniranim na SSMOT ReID skupu podataka. Vrijednosti
MOTA i MOTP metrika relativno su stabilne med̄u svim razmatranim konfiguracijama, dok
se najveće razlike u performansama očituju u metrikama povezanim s održavanjem identi-
teta.

Tablica 7.4: Usporedba performansi algoritma praćenja pri korištenju različitih ReID
modela i skupova podataka na kojima su oni trenirani.

Podaci Model HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)

SSMOT OSNet 1.0 85.57 93.03 89.82 42 94.38 25
ImageNet OSNet 1.0 83.11 92.97 89.82 63 90.43 14
MSMT17 OSNet 1.0 83.65 93.00 89.83 51 91.21 17

SSMOT ResNet50 83.57 92.98 89.83 58 91.36 17
ImageNet ResNet50 83.59 92.96 89.83 60 91.25 17

Slika 7.12 prikazuje broj uspješnih reidentifikacija objekata nakon okluzija kada se razli-
čit ReID modeli koriste za ekstrakciju vizualnih značajki u VOc-SORT algoritmu, grupirane
prema duljini okluzije. U svim kategorijama okluzija OSNet model treniran na skupu poda-
taka SSMOT ostvaruje najbolje rezultate. Najizraženije razlike u performansama mogu se
uočiti kod dugih okluzija, gdje su performanse ostalih ReID modela znatno slabije.

Vizualni primjeri na Slici 7.13 dodatno prikazuju razlike u primjeni različitih ReID mo-
dela na dva testna primjera iz SSMOT skupa videozapisa. U oba primjera OSNet model
treniran na SSMOT ReID skupu podataka uspijeva održati ispravno identitete, dok ostali
modeli imaju poteškoće u očuvanju konzistentnih identiteta. Na desnom primjeru iz vide-
ozapisa SSMOT_6 prikazana su tri plovila klase speed craft sličnog oblika (identiteti 6, 10
i 7 u trenutku t = 1). VOc-SORT, pri korištenju svih ReID modela osim domenski prilago-
d̄enog OsNet 1.0 modela, u trenutku t = 2 ne uspijeva niti jednom od tih plovila dodijeliti
isti identitet. Pogreške istih modela vidljive su i na lijevom primjeru iz SSMOT_8 videoza-
pisa. Model OsNet 1.0 treniran na MSMT17 skupu podataka dodjeljuje identitet 8, koji je u
trenutku t = 1 pripadao trajektu, novom plovilu (jahti) koje je ušlo u scenu. Kod ResNet50
modela identitet trajekta pogrešno se dodjeljuje katamaranu s kojim se mimoilazi, dok se
jahti koja je tek ušla u scenu ispravno dodjeljuje novi identitet.
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Slika 7.12: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija pri korištenju različitih modela za ekstrakciju vizualnih značajki.

7.3.4. Utjecaj korištenja dodatnog kriterija za ranije uklanjanje
izgubljenih putanja

Varijanta VOc-SORT algoritma koja uključuje dodatni uvjet za ranije uklanjanje putanja
plovila izgubljenih u blizini ruba kadra pokazuje usporedive performanse u odnosu na verziju
algoritma koja taj uvjet ne koristi. Iz Tablice 7.5 vidljivo je da varijanta s dodatnim uvjetom
ostvaruje nešto bolje vrijednosti metrika HOTA (85.57 u odnosu na 85.35) i IDF1 (94.38
u odnosu na 94.04). S druge strane, varijanta bez dodatnog uvjeta bilježi jednu promjenu
identiteta manje, odnosno uspješnu dodatnu reidentifikaciju nakon jedne kratke okluzije.
Za ostale kategorije okluzija broj uspješnih reidentifikacija jednak je u obje varijante, što
se može vidjeti na Slici 7.14. Iz navedenog slijedi da dodatan uvjet za ranije uklanjanje
putanja učinkovito ograničava broj izgubljenih putanja uz neznatan utjecaj na uspješnost
reidentifikacije. Stoga ga je preporučljivo zadržati, osobito u scenama s velikim brojem
plovila i čestim izlascima iz kadra.

Tablica 7.5: Razlika u performansama algoritma praćenja kada se koristi dodatan uvjet za
brisanje putanja i kada se on ne koristi.

Dodatni
uvjet

HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)

✓ 85.57 93.03 89.82 42 94.38 25
✗ 85.35 93.03 89.82 41 94.04 26
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Slika 7.13: Usporedni prikaz uspješnosti različitih ReID modela u održavanju identiteta
plovila na dva testna primjera. Crvenim okvirom istaknute su pogreške reidentifikacije.

7.3.5. Utjecaj korištene metode asocijacije i odabira granične
vrijednosti za vizualnu sličnost

Predloženi VOc-SORT algoritam temelji se na dvostupanjskom postupku asocijacije. U pr-
voj fazi asocijacije za povezivanje putanja i detekcija koristi se kombinacija IoU udaljenosti
i kosinusne udaljenosti vizualnih vektora značajki, dok se u drugoj fazi asocijacije kosinusna
udaljenost kombinira s Mahalanobisovom udaljenošću. U obje faze asocijacije koristi se ne-
što viša granična vrijednost za vizualnu udaljenost (0.4) u odnosu na uobičajene vrijednosti.
U okviru ove ablacijske studije analizira se utjecaj ovakvog pristupa asocijaciji na ukupne
performanse praćenja. Posebno se razmatra opravdanost primjene dviju uzastopnih faza aso-
cijacije, utjecaj njihova redoslijeda, doprinos svake pojedinačne faze te osjetljivost algoritma
na odabrani prag vizualne udaljenosti.

U Tablici 7.6 prikazani su rezultati ablacijske analize primjene različitih metoda asoci-
jacije putanja i novih detekcija, te utjecaj odabrane granične vrijednosti vizualne sličnosti.
U prvom stupcu naveden je primijenjeni postupak asocijacije, pri čemu "A1" označava jed-
nostupanjsku asocijaciju temeljenu na kombinaciji IoU i kosinusne udaljenosti, dok "A2"
označava asocijaciju koja kombinira kosinusnu i Mahalanobisovu udaljenost. Oznake "A1,
A2" i "A2, A1" ukazuju na dvostupanjski postupak asocijacije, pri čemu redoslijed oznaka
odgovara redoslijedu primjene pojedinih faza. Drugi stupac prikazuje korištene granične
vrijednosti vizualne sličnosti za svaku fazu asocijacije. U slučaju jednostupanjske asocija-
cije navedena je jedna vrijednost praga, dok su kod dvostupanjskih metoda prikazane dvije
vrijednosti koje se redom odnose na prvu i drugu fazu asocijacije.

Predloženi dvostupanjski pristup asocijaciji detekcija i putanja (A1, A2 s graničnim vri-
jednostima 0.4 i 0.4) postiže ukupno najbolje rezultate praćenja s najvišim vrijednostima
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Slika 7.14: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija kada se koristi dodatni uvjet za brisanje putanja i kada se on ne koristi.

Tablica 7.6: Usporedba performansi algoritma praćenja za različite metode asocijacije
putanja i detekcija te utjecaj odabrane granične vrijednosti vizualne sličnosti na konačne

rezultate praćenja.

Asocijacija Granične
vrijednosti

HOTA
(↑)

MOTA
(↑)

MOTP
(↑)

IDSW
(↓)

IDF1
(↑)

OKL+

(↑)

A1 0.2 83.97 93.01 89.83 67 91.08 6
A1 0.4 84.11 93.01 89.83 66 91.36 6

A2 0.2 84.45 92.89 89.85 119 92.20 20
A2 0.4 84.64 92.90 89.84 110 92.54 25

A1, A2 0.2, 0.2 84.97 93.04 89.83 47 93.22 20
A1, A2 0.2, 0.4 85.43 93.03 89.82 43 94.10 25
A1, A2 0.4, 0.2 85.11 93.05 89.83 46 93.50 20
A1, A2 0.4, 0.4 85.57 93.03 89.82 42 94.38 25

A2, A1 0.2, 0.2 84.72 93.01 89.83 63 92.71 21
A2, A1 0.2, 0.4 84.86 93.02 89.83 62 92.99 21
A2, A1 0.4, 0.2 84.96 92.99 89.83 63 93.20 26
A2, A1 0.4, 0.4 85.10 92.99 89.83 62 93.48 26

HOTA (85.57) i IDF1 (94.38) metrika, uz najmanji broj zamjena identiteta (42). Jednostu-
panjske asocijacije (A1 i A2) u pravilu ostvaruju niže vrijednosti promatranih metrika u od-
nosu na konfiguracije koje koriste dvije faze asocijacije, pri čemu je iznimka metrika MOTP,
kod koje samostalna primjena asocijacije A2 s graničnom vrijednošću 0.4 ostvaruje najvišu
vrijednost.

Usporedba jednostupanjskih pristupa pokazuje da samostalna primjena asocijacije A2
rezultira boljim ukupnim performansama praćenja u odnosu na samostalnu primjenu asoci-
jacije A1, ali uz znatno veći broj zamjene identiteta praćenih plovila. Nasuprot tome, samos-
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talna primjena asocijacije A1 pokazuje ograničenu učinkovitost u održavanju konzistentnih
identiteta plovila nakon okluzija, što se očituje u vrlo malom broju uspješnih reidentifikacija
- svega njih šest. Kombiniranjem ovih dviju asocijacija u dvostupanjski postupak navedeni
nedostaci se ublažavaju. Primjena asocijacije A2 u drugoj fazi, nakon A1, znatno povećava
broj plovila koji je uspješno identificiran nakon okluzije (s 6 se povećava na 20 pri nižem
pragu vizualne sličnosti, a na 25 pri višem). S druge strane, primjena asocijacije A1 u drugoj
fazi, nakon asocijacije A2, rezultira značajnim smanjenjem broja zamjena identiteta tijekom
praćenja, pri čemu se broj zamjena identiteta smanjuje sa 119 i 110 na 63 i 62, ovisno o oda-
branoj graničnoj vrijednosti. Istodobno se postiže i uspješna reidentifikacija jednog dodatnog
slučaja okluzije.

Analiza redoslijeda primjene asocijacija u dvostupanjskom postupku pokazuje da se u
oba razmatrana slučaja najbolji rezultati postižu kada se u obje faze koristi granična vrijed-
nost vizualne sličnosti od 0.4. Iako konfiguracija u kojoj se asocijacija A2 primjenjuje prije
A1 omogućuje ispravno razrješavanje jedne okluzije više, konfiguracija u kojoj se A1 pri-
mjenjuje u prvoj, a A2 u drugoj fazi, u pravilu ostvaruje bolje ukupne performanse praćenja.
To se očituje u višim vrijednostima HOTA, MOTA i IDF1 metrika, kao i u manjem broju
zamjena identiteta.

Na Slici 7.15 prikazan je broj uspješno reidentificiranih plovila u ovisnosti o duljini ok-
luzije, za različite konfiguracije metode asocijacije. Najlošije rezultate pokazuje samostalna
primjena asocijacije A1 s tek jednom uspješnom reidentifikacijom nakon okluzije srednje
duljine te niti jednom uspješnom reidentifikacijom u slučaju dugih okluzija. Dvostupanjski
pristupi asocijacije koji kombiniraju metode A1 i A2 pokazuju znatno bolje rezultate u re-
identifikaciji plovila nakon okluzija, neovisno o redoslijedu njihove primjene. Nadalje, kod
konfiguracija koje uključuju asocijaciju A2 povećanjem granične vrijednosti na vizualnu
sličnost s 0.2 na 0.4 kod okluzija srednje duljine uspješno se reidentificiraju dva dodatna
slučaja, dok su kod dugih okluzija zabilježena tri dodatna slučaja uspješne reidentifikacije.

Budući da je druga faza asocijacije VOc-SORT algoritma inspirirana načinom asocija-
cije StrongSORT algoritma uz povećanu graničnu vrijednost vizualne sličnosti, proveden je
dodatni eksperiment kako bi se ispitalo je li za poboljšanje performansi praćenja dovoljno
prilagoditi prag vizualne sličnosti unutar izvornog StrongSORT-a, ili je pak nužno i dodatno
modificirati sam postupak asocijacije. Rezultati tog eksperimenta prikazani su u Tablici 7.7,
gdje oznaka StrongSORT*2 označava varijantu StrongSORT algoritma s povećanom granič-
nom vrijednošću vizualne sličnosti, s 0.2 na 0.4.

Povećanje granične vrijednosti vizualne sličnosti u StrongSORT algoritmu dovodi do
porasta broja uspješnih reidentifikacija nakon okluzije, s 13 na 19 slučajeva. Na Slici 7.16
porast je vidljiv u svim kategorijama okluzija (kratke: 7 → 9, srednje duge: 2 → 4, duge:

2Razlika izmed̄u StrongSORT* algoritma i samostalne asocijacije A2 s pragom vizualne sličnosti 0.4 je u
varijanti Kalmanovog filtera korištenoj za predvid̄anje sljedećeg stanja putanje i u načinu potvrd̄ivanja putanja
u probnom razdoblju
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Slika 7.15: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija ovisno o korištenoj metodi asocijacije postojećih putanja i novih detekcija.

3 → 7), pri čemu je najizraženiji upravo kod dugih okluzija. Med̄utim, ovo poboljšanje ne
prati značajan porast ostalih kvantitativnih metrika HOTA, MOTA, MOTP i IDF1, a broj
zamjena identiteta i dalje ostaje vrlo visok.

Tablica 7.7: Utjecaj povećanja praga vizualne sličnosti u StrongSORT algoritmu.

θvis
HOTA

(↑)
MOTA

(↑)
MOTP

(↑)
IDSW

(↓)
IDF1

(↑)
OKL+

(↑)

StrongSORT 0.2 83.83 92.21 89.78 371 91.59 13
StrongSORT* 0.4 83.70 92.25 89.77 374 91.33 19
VOc-SORT 0.4, 0.4 85.57 93.03 89.82 42 94.38 25

7.4. Rasprava

U ovom poglavlju predstavljen je VOc-SORT algoritam praćenja, razvijen s ciljem poboljša-
nja robusnosti praćenja u scenarijima dugotrajnih okluzija u pomorskim okruženjima. Prove-
dena evaluacija i opsežna ablacijska studija omogućile su preciznu analizu doprinosa pojedi-
nih komponenti algoritma njegovim ukupnim performansama, pri čemu je poseban naglasak
stavljen na održavanje stabilnih identiteta praćenih objekata, osobito nakon razdoblja zaklo-
njenosti. Dobiveni rezultati potvrd̄uju da pouzdano praćenje plovila u složenim pomorskim
scenama zahtjeva integriran pristup koji objedinjuje kvalitetnu detekciju, domenski prila-
god̄enu ekstrakciju vizualnih značajki te pažljivo odabranu cijenu pridruživanja i strategiju
asocijacije putanja i detekcija.

132



Poglavlje 7. VOc-SORT ALGORITAM PRAĆENJA S POBOLJŠANIM
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Slika 7.16: Prikaz broja uspješnih reidentifikacija algoritma praćenja po kategorijama
okluzija za VOc-SORT, StrongSORT i StrongSORT* algoritme.

7.4.1. Utjecaj detekcije na performanse praćenja

Rezultati ablacijske studije pokazuju da kvaliteta detekcija izravno utječe na ukupnu učinko-
vitost algoritma praćenja, ali ima ograničen doprinos u rješavanju problema reidentifikacije
plovila nakon okluzije. Iako bolji detektor povećava vjerojatnost ponovne detekcije plovila
nakon okluzije, on ne rješava problem njegova ispravnog povezivanja s prethodnim iden-
titetom, što potvrd̄uju rezultati iz Tablice 7.2: u odnosu na najslabiji detektor YOLO11n,
najsnažniji detektor YOLO11m nakon okluzije uspješno reidentificira svega jedno plovilo
više. Med̄utim, značajno poboljšanje u vidu stabilnosti i točnosti praćenja jasno je izra-
ženo povećanjem općih metrika praćenja (HOTA: 81.34–85.57, MOTA: 89.19–93.03, IDF1:
90.73–94.38) i smanjenju broja promjena identiteta (IDSW: 77–42). Iz navedenog se može
zaključiti da iako detekcija predstavlja nužan uvjet za uspješnu reidentifikaciju objekta nakon
okluzije, ona sama po sebi nije dovoljna. Stoga je ključne izazove reidentifikacije, osobito u
slučajevima duljih okluzija, potrebno rješavati na razini drugih komponenti algoritma, poput
asocijacije i ekstrakcije vizualnih značajki, a ne isključivo kroz unaprjed̄enje detekcijskog
modela. U skladu s navedenim, može se zaključiti da je hipoteza H2 potvrd̄ena.

7.4.2. Uloga integracije vizualnih ReID značajki i informacija o
kretanju u asocijaciji putanja i detekcija

Rezultati ablacijske studije 7.3.2 ukazuju na važnost zajedničke integracije vizualnih zna-
čajki i informacija o kretanju u postupku asocijacije putanja i detekcija. Uključivanje vi-
zualnih značajki u drugoj fazi asocijacije pokazalo se ključnim za uspješnu reidentifikaciju
plovila nakon okluzije, što je u skladu s njezinom funkcionalnom ulogom u povezivanju iz-
gubljenih putanja s novim detekcijama nakon duljih prekida vidljivosti. U toj fazi, prostorno-
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dinamičke informacije dobivene iz modela kretanja često nisu dovoljne za pouzdanu asoci-
jaciju, osobito u scenarijima s većim brojem plovila koja imaju slične obrasce kretanja kada
vizualne značajke predstavljaju nužan dodatni izvor diskriminativne informacije.

S druge strane, izostavljanje vizualnih ReID značajki samo u prvoj fazi asocijacije ne
dovodi do izrazitog pogoršanja performansi predloženog algoritma u vidu reidentifikacije
plovila nakon okluzije. U promatranoj konfiguraciji zabilježena je čak i neznatno veća us-
pješnost reidentifikacije u kategoriji srednje dugih okluzija, dok je broj uspješno reidenti-
ficiranih plovila u ostalim kategorijama jednak konfiguraciji u kojoj se vizualne značajke
koriste u obje faze asocijacije. Takvo ponašanje može se objasniti činjenicom da se prva faza
asocijacije u velikoj mjeri oslanja na geometrijsku blizinu detekcija i dobivenih predvid̄anja
putanja, koja je u uvjetima malih vremenskih razmaka često dovoljna za ispravnu asocijaciju.
Med̄utim, kako ilustrira kvalitativni primjer prikazan na Slici 7.11, u situacijama koje uklju-
čuju privremeni gubitak objekta i istodobnu prisutnost drugih plovila u istom prostornom
području, izostavljanje vizualnih informacija u prvoj fazi asocijacije može povećati vjerojat-
nost pogrešne dodjele identiteta te narušiti stabilnost praćenja. Takve se pogreške očituju u
degradaciji HOTA, MOTA, IDSW i IDF1 metrika, što je vidljivo iz rezultata prikazanih u
Tablici 7.3. Kako se povećava broj izgubljenih plovila (čije se putanje u sustavu zadržavaju
odred̄eni vremenski period), raste i rizik od pogrešnih asocijacija temeljenih isključivo na
preklapanju graničnih okvira, budući da se prostorne pozicije izgubljenih i aktivno praćenih
objekata mogu preklapati. Uključivanjem vizualnih ReID značajki u prvu fazu asocijacije
sustavu se pruža dodatna diskriminativna informacija koja omogućuje razlikovanje trenutno
detektiranog plovila od vizualno različitih izgubljenih plovila, čime se smanjuje vjerojatnost
pogrešne dodjele identiteta.

Iz Tablice 7.3 može se vidjeti da konfiguracija u kojoj su vizualne ReID značajke uklju-
čene u obje faze asocijacije dosljedno ostvaruje najbolje ukupne rezultate prema standard-
nim evaluacijskim metrikama, uz najmanji broj zamjena identiteta. Izostavljanjem vizualnih
značajki iz jedne od faza asocijacije dolazi do pogoršanja vrijednosti metrika, pri čemu je
to pogoršanje izraženije kada se vizualne značajke izostave iz druge faze asocijacije, koja
je namijenjena reidentifikaciji objekata nakon duljih okluzija. Najslabije performanse zabi-
lježene su u konfiguraciji koja ne koristi vizualne značajke ni u jednoj fazi asocijacije. U
cjelini, dobiveni rezultati pružaju empirijsku potporu hipotezi H4, ukazujući na važnost in-
tegracije vizualnih ReID značajki i informacija o kretanju za stabilnije praćenje i pouzdanu
asocijaciju detekcija i putanja u uvjetima dugotrajnih okluzija.

7.4.3. Uloga ReID modela i domenske prilagodbe

Analiza utjecaja korištenog modela za ekstrakciju vizualnih značajki ukazuje na to da sta-
bilna reidentifikacija plovila ovisi o odabiru prikladne arhitekture ReID modela, kao i o
njegovoj domenskoj prilagodbi. Iako su oba promatrana modela trenirana na domenski spe-
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cifičnom SSMOT ReID skupu podataka, OSNet, kao arhitektura izvorno dizajnirana za za-
datak reidentifikacije, postiže ukupno bolje rezultate praćenja od općeg ResNet50 modela.
To se očituje u višim vrijednostima HOTA (85.57-83.57) i IDF1 (94.38-91.36) metrika, kao
i u većem broju uspješnih reidentifikacija nakon okluzija (25-17), pri čemu je razlika osobito
izražena u slučaju okluzija duljeg trajanja (9-4).

Dodatna analiza učinka domenske prilagodbe ukazuje na njezin izražen pozitivan utjecaj
kod OSNet arhitekture, dok se kod ResNet50 arhitekture ne uočavaju značajna poboljšanja
u odnosu na model treniran na općem skupu podataka. Dobiveni rezultati upućuju na to da
učinak domenske prilagodbe ReID modela nije univerzalan, već je uvjetovan arhitekturom
modela, pri čemu su pozitivni učinci izraženiji kod arhitektura specijaliziranih za zadatak
reidentifikacije. U tom se smislu hipoteza H3 o pozitivnoj ulozi domenske prilagodbe može
smatrati djelomično potvrd̄enom.

S druge strane, ReID modeli trenirani na općim skupovima podataka mogu predstavljati
prihvatljivo rješenje u situacijama kada domenski prilagod̄eni modeli nisu dostupni. Me-
d̄utim, dobiveni rezultati ukazuju na njihova ograničenja u složenijim uvjetima praćenja,
osobito u prisutnosti dugotrajnih okluzija, mimoilaženja plovila te u scenarijima s vizualno
sličnim objektima.

7.4.4. Strategija asocijacije i robusnost na dugotrajne okluzije

Kao jedan od važnijih doprinosa ove disertacije može se istaknuti predloženi dvostupanjski
pristup asocijaciji, s pažljivo odabranim mjerama sličnosti u pojedinim fazama asocijacije,
koji pokazuje potencijal za poboljšanje performansi algoritma u uvjetima dugotrajnih oklu-
zija, uz očuvanje stabilnosti praćenja.

Prva asocijacija (A1) zasniva se na geometrijsko-vizualnim kriterijima koji prioritiziraju
visoku vizualnu sličnost i preklapanje izmed̄u detektiranih i predvid̄enih graničnih okvira,
čime se osigurava stabilan kontinuitet putanja u situacijama kada su nove detekcije dostupne
i pouzdane. Med̄utim, kada zbog okluzije detekcije izostaju tijekom odred̄enog vremenskog
perioda, pogreška u predvid̄anju Kalmanovanovog filtera postupno se akumulira, zbog čega
se predvid̄eni granični okvir u pravilu više ne preklapa s novom detekcijom u trenutku ponov-
nog pojavljivanja plovila, što ograničava sposobnost ove faza asocijacije da samostalno vrati
ispravan identitet plovila nakon okluzije. To potvrd̄uju rezultati ablacijske studije, prema
kojima samostalna primjena asocijacije A1 postiže svega 6 uspješnih reidentifikacija nakon
okluzije, dok se u slučaju dugotrajnih okluzija ne bilježi niti jedna uspješna reidentifikacija.

S druge strane, kombinacija Mahalanobisove i kosinusne udaljenosti (A2) pokazuje se
znatno učinkovitijom u fazi reidentifikacije, budući da u obzir uzima i dinamiku kretanja
plovila te nesigurnost predvid̄anja Kalmanovog filtera. Time se omogućuje tolerancija na
veća odstupanja izmed̄u predvid̄enog i stvarnog položaja objekta, što je osobito važno nakon
duljih okluzija, kada geometrijsko preklapanje graničnih okvira često izostaje. Med̄utim,

135



Poglavlje 7. VOc-SORT ALGORITAM PRAĆENJA S POBOLJŠANIM
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kada se takav fleksibilniji kriterij koristi samostalno dolazi do znatnog porasta zamjena iden-
titeta, što potvrd̄uje vrijednost IDSW metrike asocijacije A2 u Tablici 7.6.

Predloženi dvostupanjski pristup koristi prostorno strožu asocijaciju u prvoj fazi kako
bi se osigurala stabilnost identiteta kod pouzdanih pridruživanja, dok se prostorno fleksibil-
nija asocijacija s vizualnim značajkama i Mahalanobisovom udaljenošću koristi tek u drugoj
fazi kako bi se omogućila reidentifikacija plovila nakon duljih prekida. Time se istodobno
smanjuje broj zamjena identiteta za vrijeme praćenja, zadržava sposobnost reidentifikacije
plovila nakon duljih okluzija i postiže stabilnost praćenja. To potvrd̄uju rezultati ablacijske
studije prikazani u Tablici 7.6. Pri tome je važno, osobito u drugoj fazi asocijacije koja je
usmjerena na rješavanje problema reidentifikacije objekta, koristiti nešto višu graničnu vri-
jednost za udaljenost vektora vizualnih značajki, kako se potencijalno ispravna pridruživanja
ne bi odbacila u slučajevima većih vizualnih odstupanja koja mogu nastati uslijed duljih ok-
luzija. Samim povećanjem granične vrijednosti u drugoj asocijaciji A2 s 0.2 na 0.4 broj
uspješno reidentificiranih plovila nakon okluzije raste s 20 na 25.

Dodatnu potporu tezi o važnosti povećanja granične vrijednosti vizualne sličnosti u dru-
goj fazi asocijacije za pouzdanu reidentifikaciju plovila nakon dugotrajnih okluzija pružaju i
rezultati ablacijske studije 7.3.5 (Tablica 7.7, Slika 7.16) u kojoj su uspored̄ene performanse
izvornog StrongSORT algoritma, koji je bio inspiracija za drugu fazu asocijacije VOc-SORT-
a, s originalnim pragom vizualne sličnosti od 0.2, te njegove modificirane varijante s povi-
šenom graničnom vrijednosti od 0.4. Rezultati pokazuju da povećanje granične vrijednosti
vizualne sličnosti doprinosi većoj uspješnosti reidentifikacije plovila nakon okluzija, osobito
u slučaju dugotrajnih okluzija. Med̄utim, kao i u konfiguracijama "A2" koje se oslanjaju
isključivo na drugu fazu asocijacije, modificirana varijanta StrongSORT algoritma i dalje
bilježi povećan broj zamjena identiteta te generalno ostvaruje slabije performanse praćenja.
Time se dodatno ističu prednosti dvostupanjske strategije asocijacije primijenjene u VOc-
SORT algoritmu, koja omogućuje učinkovitije očuvanje identiteta uz ravnotežu pouzdanosti
reidentifikacije i stabilnosti praćenja.

Prethodno razmatranje i dobiveni rezultati potvrd̄uju da unaprjed̄enje postupka asocija-
cije detekcija i putanja može doprinijeti boljem očuvanju identiteta plovila tijekom dugotraj-
nih okluzija, u skladu s hipotezom H5.

Produljeno vrijeme čekanja na uklanjanje putanja uvedeno je kako bi se omogućila re-
identifikacija plovila i nakon duljih okluzija. Takav pristup, med̄utim, može dovesti do na-
kupljanja izgubljenih putanja plovila koja su vjerojatno trajno napustila kadar. Uvod̄enjem
dodatnog kriterija za ranije uklanjanje putanja izgubljenih u blizini ruba kadra taj se problem
reducira. Rezultati ablacijske studije pokazuju da navedeni kriterij ne utječe nepovoljno na
uspješnost reidentifikacije, štoviše rezultira nešto višim vrijednostima HOTA i IDF1 me-
trika, te doprinosi stabilnijem radu algoritma i sprječava akumulaciju nerelevantnih putanja
tijekom produljenog vremena čekanja.
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7.4.5. Položaj predloženog algoritma u odnosu na postojeće metode

Jedna od ključnih pretpostavki ovog istraživanja, formulirana hipotezom H1, jest da posto-
jeće metode praćenja plovila pokazuju smanjenu sposobnost očuvanja identiteta u uvjetima
dugotrajnih okluzija. Kvantitativni rezultati evaluacije na SSMOT skupu videozapisa, prika-
zani u Tablici 7.1 i dodatno ilustrirani analizom broja uspješnih reidentifikacija prema duljini
okluzije sa Slike 7.4, potvrd̄uju navedenu hipotezu. Sve analizirane postojeće metode bilježe
jako nizak broj uspješnih reidentifikacija u slučajevima srednje dugih i dugih okluzija, što
ukazuje na ograničenu sposobnost očuvanja identiteta u takvim uvjetima.

Usporedba s postojećim metodama praćenja pokazuje da se predloženi VOc-SORT al-
goritam pozicionira kao rješenje koje uravnotežuje stabilnost praćenja i sposobnost reidenti-
fikacije plovila u složenim pomorskim scenarijima. Posebno se ističe njegova učinkovitost
u očuvanju identiteta nakon okluzija, s ukupno 25 uspješnih reidentifikacija, u usporedbi s
13 koliko ostvaruje sljedeća najbolja metoda, pri čemu je razlika još izraženija kod srednje
dugih i dugih okluzija.

Usporedba VOc-SORT algortima s postojećim pristupima koji koriste vizualne značajke,
poput BoT-SORT-a, StrongSORT-a i Deep OC-SORT-a, ukazuje da razlike u performansama
ne proizlaze isključivo iz korištenja ReID modela, već ponajprije iz načina na koji su vizu-
alne informacije integrirane u proces asocijacije. Nadalje, usporedba performansi varijante
VOc-SORT algoritma u kojoj su vizualne informacije u potpunosti izostavljene (A1 ✗, A2
✗ u Tablici 7.3) s postojećim pristupima koji takod̄er koriste samo prostorno-dinamičke in-
formacije (Tablica 7.1, ReID ✗) pokazuje da VOc-SORT i u toj konfiguraciji ostvaruje više
vrijednosti HOTA, MOTA i IDF1 metrika, uz manji broj zamjena identiteta te veći broj is-
pravno reidentificiranih plovila nakon okluzija. Štoviše, u promatranom eksperimentalnom
okruženju, performanse varijante VOc-SORT algoritma koja ne koristi ReID značajke uspo-
redive su, a u nekim slučajevima i bolje u odnosu na neke postojeće pristupe koji ih koriste.

Predloženi dvostupanjski postupak asocijacije razlikuje se od postojećih pristupa u al-
goritmima BoT-SORT i ByteTrack. U tim metodama povezivanje u prvoj fazi asocijacije
temelji se isključivo na IoU udaljenosti (ByteTrack) ili na njenoj kombinaciji s vizualnim
značajkama BoT-SORT), dok oba algoritma u drugoj fazi koriste samo IoU. OC-SORT al-
goritam takod̄er koristi dvije faze asocijacije, no u slučaju OC-SORT-a obje faze asocijacije
koriste isključivo prostorne informacije i informaciju o kretanju: kombinaciju IoU i konzis-
tontnosti smjera kretanja u prvoj fazi, te samo IoU u drugoj fazi. Nasuprot tome, u pred-
loženom pristupu vizualne značajke koriste se u obje faze asocijacije, te se u drugoj fazi
kriterij preklapanja graničnih okvira zamjenjuje se Mahalanobisovom udaljenošću koja je
ključna za reidentifikaciju objekata nakon duljih zaklonjenosti kada eksplicitno preklapanje
graničnih okvira predvid̄ene putanje i detekcije izostaje. Navedeno je potkrijepljeno kvan-
titativnim rezultatima evaluacije iz Tablice 7.1, kao i analizom prikazanom na Slici 7.4, iz
kojih je vidljivo da VOc-SORT algoritam pokazuje bolje rezultate u reidentifikaciji plovila
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nakon okluzija, osobito u slučajevima srednje dugih i dugih razdoblja zaklonjenosti.
U odnosu na postojeće pristupe, VOc-SORT se pokazuje kao uravnoteženo rješenje za

praćenje više objekata u pomorskom okruženju. Složeniji duboki modeli neuronskih mreža
koriste se isključivo ondje gdje su doista nužni, odnosno u fazama detekcije i ekstrakcije
vizualnih značajki. Umjesto oslanjanja na dodatne duboke arhitekture, poboljšane perfor-
manse predloženog algoritma postignute su sustavnom kombinacijom postojećih jednostav-
nih koncepata kroz pažljivo osmišljen postupak asocijacije i domenski prilagod̄ene vizualne
značajke. Na ovaj način poboljšane su performanse praćenja u vidu stabilnosti i reidentifi-
kacije, a zadržana je računalna učinkovitost koja je usporediva s ostalim metodama praćenja
koje koriste ReID modele.

7.4.6. Ograničenja predloženog pristupa

Unatoč postignutim poboljšanjima, predloženi pristup ima odred̄ena ograničenja. Perfor-
manse VOc-SORT algoritma i dalje su u velikoj mjeri uvjetovane kvalitetom ulaznih de-
tekcija, što predstavlja temeljno ograničenje pristupa temeljenih na detekciji. Poboljšana
strategija asocijacije pomaže u reidentifikaciji plovila nakon okluzije, ali ne može ispravno
ponovno identificirati objekt koji uopće nije detektiran. Nadalje, mogućnost reidentifikacije
ograničena je maksimalnim vremenom čekanja putanja od 625 okvira, zbog čega okluzije
ekstremnog trajanja i dalje predstavljaju otvoren izazov. Pojedini pragovi, uključujući i gra-
ničnu vrijednost vizualne sličnosti, odred̄eni su empirijski, a njihov učinak van odabranih
vrijednosti nije analiziran. U okviru rada takod̄er je zadržan standardni Kalmanov filter za
predvid̄anje stanja putanja, dok potencijalni učinci alternativnih modela predvid̄anja nisu
razmatrani. Konačno, evaluacija je provedena isključivo u pomorskoj domeni, na konkret-
nom primjeru praćenja plovila u splitskoj luci, generalizacija predloženog pristupa na druga
pomorska okruženja i domene nije ispitana.
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Automatska detekcija i praćenje plovila predstavljaju ključne preduvjete za razvoj autonom-
nih sustava nadzora pomorskog prometa kojima bi se ublažila ograničenja postojećih rješenja
temeljenih na radarskim sustavima i AIS-u te smanjila potreba za ljudskom intervencijom. U
tom se kontekstu metode računalnog vida temeljene na dubokom učenju nameću kao relevan-
tan istraživački smjer. Med̄utim, pouzdano praćenje plovila u stvarnim operativnim uvjetima
ostaje izazovno zbog čestih zaklonjenosti i privremenih gubitaka detekcija, što otežava oču-
vanje identiteta i kontinuiteta putanja, osobito tijekom duljih prekida vidljivosti. Dodatno,
u području praćenja plovila općenito je izražen nedostatak javno dostupnih i općeprihvaće-
nih referentnih skupova podataka, što ograničava objektivnu evaluaciju postojećih metoda i
usporava sustavni razvoj novih algoritamskih rješenja.

Cilj ove doktorske disertacije je istražiti i eksperimentalno validirati sustav za automatsku
detekciju i praćenje plovila u RGB videozapisima koji kombinira metode dubokog učenja i
tradicionalne algoritamske pristupe, poput Kalmanovog filtera i mad̄arskog algoritma, s ci-
ljem povećanja stabilnosti praćenja i očuvanja identiteta plovila u uvjetima dugotrajnih oklu-
zija. U okviru tog cilja, disertacija adresira i izazov nedostatka referentnih skupova podataka
za praćenje plovila razvojem novog SSMOT skupa podataka, koji omogućuje objektivnu us-
poredbu različitih pristupa za praćenje plovila te analizu njihovih performansi u uvjetima
okluzija različitog trajanja.

Provedenim istraživanjem, u skladu s postavljenim istraživačkim ciljem, ostvareni su
očekivani znanstveni doprinosi. Prvi doprinos odnosi se na izradu referentnog skupa ozna-
čenih slika i videozapisa za detekciju, reidentifikaciju i praćenje plovila, koji uključuje jasno
definirane primjere okluzija različitog trajanja. Takav skup podataka omogućuje objektivnu
evaluaciju postojećih metoda, kao i sustavnu analizu njihovih performansi tijekom okluzija,
te predstavlja vrijednu osnovu za daljnja istraživanja u području praćenja plovila. Drugi
doprinos ostvaren je razvojem algoritma za praćenje plovila u RGB videozapisima s pobolj-
šanim performansama u uvjetima dugotrajnih okluzija, čime se postiže stabilnije očuvanje
identiteta i smanjenje fragmentacije putanja u odnosu na postojeće pristupe te se dodatno
unapred̄uje robusnost praćenja u složenim pomorskim scenarijima.

Rezultati provedenih eksperimenata ukazuju na ograničenja postojećih algoritama praće-
nja u scenarijima koji uključuju dulje prekide vidljivosti plovila. Iako poboljšanje kvalitete
detekcija pozitivno utječe na opće performanse praćenja, ono samo po sebi nije dostatno za
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pouzdanu reidentifikaciju plovila nakon dugotrajnih okluzija. U tom je kontekstu u sklopu
disertacije predložen algoritam praćenja plovila VOc-SORT, koji integrira domenski prilago-
d̄ene vizualne značajke i prostorno-dinamičke informacije unutar dvostupanjskog postupka
asocijacije, čime se dodatno unapred̄uje sposobnost očuvanje identiteta plovila. Dobiveni
rezultati potvrd̄uju da takav pristup omogućuje stabilnije praćenje plovila, uz smanjenje za-
mjena identiteta i povećanje uspješnosti reidentifikacije nakon duljih razdoblja zaklonjenosti.
Na temelju dobivenih rezultata može se smatrati da su postavljene pomoćne istraživačke hi-
poteze empirijski utemeljene, što ujedno podupire i glavnu istraživačku hipotezu disertacije.

Unatoč postignutim poboljšanjima i potvrd̄enoj učinkovitosti predloženog pristupa, pro-
vedeno istraživanje ima odred̄ena ograničenja koja je potrebno uzeti u obzir. Jedno od ključ-
nih ograničenja odnosi se na prostornu i kontekstualnu ograničenost skupa podataka SSMOT,
koji je prikupljen na jednoj lokaciji i s jednom fiksnom kamerom, zbog čega generalizacija
dobivenih rezultata na različita pomorska okruženja, konfiguracije kamera i klimatske uvjete
zahtijeva dodatnu eksperimentalnu provjeru. Nadalje, predloženi sustav temelji se isklju-
čivo na vizualnim informacijama RGB kamere, pa se u uvjetima izrazito loše vidljivosti,
poput guste magle, noćnih uvjeta bez rasvjete ili jakih atmosferskih smetnji, može očeki-
vati degradacija performansi. Iako se prilikom implementacije VOc-SORT algoritma pazilo
na njegovu računsku složenost, znatno povećanje broja istovremeno praćenih plovila ili pri-
mjena na sustave s ograničenim hardverskim resursima može predstavljati izazov. Takod̄er,
zbog definiranog ograničenja na maksimalnu duljinu čekanja pojavljivanja plovila nakon ok-
luzije, ovako implementirani algoritam nije otporan na okluzije ekstremnog trajanja, koje i
dalje predstavljaju otvoren izazov.

Polazeći od navedenog, buduća istraživanja mogu biti usmjerena u nekoliko smjerova.
Prije svega, preporučuje se proširiti referentni SSMOT skup podataka na veći broj lokacija i
raznovrsnija pomorska okruženja, uključujući otvoreno more i više luka, kako bi se omogu-
ćila robusnija evaluacija i poboljšala generalizacija predloženog pristupa. Nadalje, integra-
cija dodatnih senzora, poput termalnih kamera, radara ili AIS podataka, otvara mogućnost
razvoja višesenzorskih sustava povećane otpornosti na loše uvjete vidljivosti. Buduća istra-
živanja mogu se dodatno usmjeriti na ispitivanje naprednijih pristupa predvid̄anju kretanja
plovila, razvoj adaptivnih strategija asocijacije prilagod̄enih promjenjivim uvjetima praćenja
te na analizu potencijala primjene transformerskih modela, uz poseban naglasak na optimi-
zaciju njihove računalne učinkovitosti i mogućnost primjene u stvarnom vremenu.
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A. Struktura SSMOT detekcijskog podskupa prije i
nakon proširenja

U ovom dodatku detaljno je prikazana struktura SSMOT detekcijskog podskupa prije i nakon
proširenja.

Slika A.1 daje pregled broja instanci objekata po klasama te jasno pokazuje razliku u
obimu podataka prije i nakon proširenja. Dodatno, Slika B.1 daje usporedni prikaz udjela
instanci pojedine klase u detekcijskom skupu podataka prije i nakon proširenja. S druge
strane, Tablica A.1 pruža detaljan prikaz broja slika na kojima se pojavljuju plovila pojedi-
nih klasa te broja instanci po klasama, razdvojeno prema skupovima za treniranje i valida-
ciju, kao i sveukupno. Na taj način omogućena je usporedba distribucije objekata te uvid u
značajno povećanje veličine detekcijskog podskupa nakon provedenog postupka proširenja.

Napomena. U retku "Ukupno" Tablice A.1 u stupcima naziva "Slike“ naveden je ukupan

broj slika u pojedinom skupu podataka. Ova vrijednost ne mora odgovarati zbroju po svim

klasama, budući da se na istoj slici može nalaziti više različitih objekata.

Analizom nije obuhvaćen nezavisni testni skup koji se vodi odvojeno, budući da je fiksan
i nije bio predmet proširenja.

Slika A.1: Broj instanci objekata pojedine klase prije i nakon proširenja podskupa za
detekciju.
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Slika A.2: Udio instanci objekata pojedine klase prije i nakon proširenja podskupa za
detekciju.
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Tablica A.1: Pregled broja slika i instanci po klasama u SSMOT detekcijskom podskupu prije i nakon proširenja.

Train Val Sveukupno
Klasa Slike Inst. Inst. (%) Slike Inst. Inst. (%) Slike Inst. Inst. (%)

Pr
ije

pr
oš

ir
en

ja
Small craft 169 343 2.97 39 84 3.92 208 427 3.12
Small Fishing Boat 410 428 3.71 71 77 3.60 481 505 3.69
Small Passenger Ship 635 754 6.53 110 129 6.03 745 883 6.45
Fishing Trawler 1109 1414 12.25 209 275 12.84 1318 1689 12.35
Large Passenger Ship 886 1113 9.65 154 195 9.11 1040 1308 9.56
Sailing Boat 669 1270 11.01 124 223 10.42 793 1493 10.91
Speed Craft 750 1027 8.90 140 192 8.97 890 1219 8.91
Motorboat 506 532 4.61 102 110 5.14 608 642 4.69
Pleasure Yacht 345 382 3.31 57 61 2.85 402 443 3.24
Ferry 2321 3901 33.81 416 712 33.26 2737 4613 33.72
High-speed craft 357 375 3.25 77 83 3.88 434 458 3.35
Ukupno 2661 11539 100.00 470 2141 100.00 3131 13680 100.00

N
ak

on
pr

oš
ir

en
ja

Small craft 517 1417 3.63 90 199 2.92 607 1616 3.53
Small Fishing Boat 1023 1101 2.82 168 186 2.73 1191 1287 2.81
Small Passenger Ship 2755 3496 8.96 483 613 9.00 3238 4109 8.97
Fishing Trawler 3751 4098 10.50 652 714 10.48 4403 4812 10.50
Large Passenger Ship 3360 4150 10.64 604 741 10.88 3964 4891 10.67
Sailing Boat 2139 3261 8.36 390 612 8.98 2529 3873 8.45
Speed Craft 3203 4501 11.54 540 769 11.29 3743 5270 11.50
Motorboat 1780 1902 4.87 320 343 5.03 2100 2245 4.90
Pleasure Yacht 1282 1383 3.54 225 243 3.57 1507 1626 3.55
Ferry 7088 12351 31.66 1242 2133 31.31 8330 14484 31.60
High-speed craft 1274 1357 3.48 233 260 3.82 1507 1617 3.53
Ukupno 7632 39017 100.00 1347 6813 100.00 8979 45830 100.00
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B. Detalji o SSMOT videozapisima za praćenje

Ovaj dodatak nadopuna je Potpoglavlju 4.4, u kojem je predstavljen podskup SSMOT skupa
podataka namijenjen evaluaciji algoritama praćenja, koji sadrži ukupno 18 videozapisa. Na
Slici B.1 prikazani su primjeri kadrova iz tih videozapisa, raspored̄eni od SSMOT_1 u gor-
njem lijevom kutu do SSMOT_18 u donjem desnom.

Slika B.1: Primjer kadrova iz SSMOT videozapisa.

U Tablici B.1 prikazan je točan broj putanja i odgovarajućih graničnih okvira za svaku
klasu plovila u pojedinim videozapisima SSMOT skup podataka. Ovakav pregled omogućuje
bolje razumijevanje strukture samih videozapisa, odnosno raspodjele objekata po klasama i
videozapisima, čime se može procijeniti raznolikost i složenost pojedinih scena.

Tablica B.2 daje detaljan pregled svih zabilježenih okluzija u videozapisima SSMOT
skupa podataka. Za svaku okluziju naveden je identifikator zaklonjenog objekta, pripadajuća
klasa plovila, početni i završni okvir te ukupno trajanje izraženo u okvirima i sekundama.
Boje korištene u tablici označavaju kategoriju okluzije prema trajanju: kratke (zelene), sred-
nje duge (žute) i duge (crvene) okluzije. Ove su informacije posebno su važne za procjenu ot-
pornosti algoritama praćenja na okluzije različitog trajanja. Usporedba njihovih performansi
na sekvencama s kratkim, srednje dugim i dugim okluzijama omogućuje analizu ograničenja
i prednosti u realnim uvjetima praćenja. Tablica pritom služi kao referenca za kvantitativnu i
kvalitativnu evaluaciju, jer precizno definira situacije potpunog prekida vidljivosti objekata.
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Tablica B.1: Pregled broja putanja i graničnih okvira za različite tipove plovila u SSMOT videozapisima.

Small
Craft

Small
Fishing

Boat

Small
Passenger

Ship

Fishing
Trawler

Large
Passenger

Ship

Sailing
Boat

Speed
Craft

Motorboat
Pleasure

Yacht
Ferry

High-speed
craft

SSMOT_1
putanje 1 1 2 1 5

gr. okviri 287 287 574 287 1435

SSMOT_2
putanje 1 1 4 1 2 9

gr. okviri 545 604 1516 542 1208 4415

SSMOT_3
putanje 1 2 1 1 1 1 7

gr. okviri 982 2074 882 1037 1037 1037 7049

SSMOT_4
putanje 1 1 1 2 2 1 8

gr. okviri 370 370 370 630 740 370 2850

SSMOT_5
putanje 1 1 1 2 1 1 7

gr. okviri 368 433 433 801 433 433 2901

SSMOT_6
putanje 1 1 1 4 2 2 11

gr. okviri 856 856 856 2903 807 1712 7990

SSMOT_7
putanje 1 1 1 1 4

gr. okviri 451 451 451 451 1804

SSMOT_8
putanje 1 1 3 3 2 1 11

gr. okviri 345 1697 1691 2547 3394 820 10494
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Small
Craft

Small
Fishing

Boat

Small
Passenger

Ship

Fishing
Trawler

Large
Passenger

Ship

Sailing
Boat

Speed
Craft

Motorboat
Pleasure

Yacht
Ferry

High-speed
craft

SSMOT_9
putanje 1 1 1 1 2 2 8

gr. okviri 922 872 472 922 1607 1562 6357

SSMOT_10
putanje 1 2 4 3 2 12

gr. okviri 836 1672 849 1542 1672 6571

SSMOT_11
putanje 7 1 3 1 12

gr. okviri 1914 277 717 277 3185

SSMOT_12
putanje 6 1 2 1 10

gr. okviri 3783 733 1856 558 6930

SSMOT_13
putanje 1 1 2 2 1 7

gr. okviri 646 646 776 1277 302 3647

SSMOT_14
putanje 1 2 1 1 3 1 9

gr. okviri 598 1196 598 288 1794 598 5072

SSMOT_15
putanje 1 1 2 1 1 1 7

gr. okviri 585 585 1170 585 585 585 4095

SSMOT_16
putanje 1 2 3 1 2 1 10

gr. okviri 940 1880 2331 940 1741 910 8742

SSMOT_17
putanje 2 1 1 4

gr. okviri 1882 941 941 3764
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Small
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Small
Fishing

Boat

Small
Passenger

Ship

Fishing
Trawler

Large
Passenger

Ship

Sailing
Boat

Speed
Craft

Motorboat
Pleasure

Yacht
Ferry

High-speed
craft

SSMOT_18
putanje 1 1 1 1 2 2 8

gr. okviri 332 538 300 538 921 1076 3705

Ukupno
putanje 13 2 9 13 14 13 28 11 5 31 10 149

gr. okviri 5697 783 5831 9197 9767 8277 12841 6120 4126 22375 5992 91006
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Tablica B.2: Detaljan pregled okluzija u SSMOT skupu videozapisa.
Zelenom su označene kratke (≤ 2s), žutom srednje duge (> 2s i ≤ 8s), a crvenom

duge (> 8s) okluzije plovila.

Video ID Kategorija Početni
okvir

Završni
okvir

Trajanje
(okviri)

Trajanje
(s)

SSMOT_1 5 Speed Craft 103 199 97 3.87

SSMOT_3
4 Pleasure Yacht 421 740 320 12.79
5 Motorboat 251 810 560 22.38

SSMOT_5 6 Motorboat 64 115 52 2.08

SSMOT_6 6 Speed Craft 535 615 81 3.24

SSMOT_7 4 Small Fishing Boat 177 210 34 1.36

SSMOT_8 2 Fishing Trawler 1395 1408 14 0.56

SSMOT_9

1 High-speed Craft 652 686 35 1.40
3 Small Passenger Ship 181 455 275 10.99
4 Speed Craft 213 507 295 11.79
4 Speed Craft 911 920 10 0.40
6 Fishing Trawler 574 610 37 1.48
6 Fishing Trawler 647 660 14 0.56

SSMOT_12
4 Small Craft 553 583 31 1.24
8 Small Craft 74 84 11 0.44

SSMOT_13

1 Ferry 369 535 167 16.67
3 Small Passenger Ship 416 457 42 4.19
4 Motorboat 75 147 73 7.29
4 Motorboat 308 364 57 5.69
4 Motorboat 478 618 141 14.08

SSMOT_14
7 Large Passenger Ship 36 307 272 27.15
8 Speed Craft 80 181 102 10.18
9 Sailing Boat 207 497 291 29.05

SSMOT_15 6 Motorboat 131 415 285 11.38

SSMOT_16

2 Fishing Trawler 137 161 25 1.00
2 Fishing Trawler 766 775 10 0.40
6 Motorboat 221 230 10 0.40
6 Motorboat 545 717 173 6.91

SSMOT_17
2 Small Passenger Ship 441 478 38 1.27
4 Speed Craft 351 555 205 6.83

SSMOT_18 8 Speed Craft 209 218 10 0.40
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C. Detaljni rezultati evaluacije YOLO11n/m/s detektora
prije i nakon proširenja detekcijskog podskupa

U ovom dodatku prikazani su detaljni rezultati evaluacije YOLO11n/m/s detektora na skupu
za testiranje. Tablica C.1 sadrži pregled performansi modela po pojedinačnim klasama i
ukupno, kako prije tako i nakon treniranja na proširenom SSMOT skupu podataka za detek-
ciju. Uz to, data je i usporedna analiza u vidu preciznost–odziv krivulja na Slici C.1, čime
se dodatno ilustrira utjecaj proširenja skupa podataka i korištene arhitekture na konačne per-
formanse modela.
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Tablica C.1: Detaljan pregled rezultata evaluacije YOLO11n/s/m detektora (po klasama i ukupno) prije i nakon treniranja na proširenom SSMOT
skupu podataka za detekciju.

YOLO11n YOLO11s YOLO11m
Klasa P R mAP50 mAP50:95 P R mAP50 mAP50:95 P R mAP50 mAP50:95

Pr
ije

pr
oš

ir
en

ja

Small craft 0.968 0.784 0.888 0.670 0.969 0.810 0.901 0.747 0.958 0.840 0.916 0.781
Small Fishing Boat 0.459 0.200 0.357 0.297 0.588 0.235 0.425 0.372 0.654 0.200 0.442 0.416
Small Passenger Ship 0.909 0.701 0.817 0.706 0.919 0.754 0.835 0.753 0.918 0.777 0.863 0.783
Fishing Trawler 0.991 0.942 0.971 0.721 0.984 0.958 0.977 0.722 0.993 0.954 0.977 0.777
Large Passenger Ship 0.990 0.972 0.985 0.935 0.997 0.975 0.987 0.950 0.997 0.997 0.988 0.960
Sailing Boat 0.886 0.838 0.899 0.815 0.931 0.850 0.911 0.851 0.951 0.877 0.931 0.883
Speed Craft 0.777 0.677 0.720 0.559 0.795 0.758 0.768 0.621 0.802 0.792 0.801 0.680
Motorboat 0.537 0.348 0.401 0.306 0.569 0.452 0.451 0.369 0.689 0.486 0.568 0.493
Pleasure Yacht 0.824 0.682 0.800 0.677 0.914 0.636 0.796 0.706 0.832 0.755 0.847 0.746
Ferry 0.975 0.966 0.980 0.859 0.985 0.955 0.975 0.866 0.986 0.970 0.983 0.901
High-speed craft 0.856 0.922 0.937 0.717 0.906 0.961 0.967 0.824 0.961 0.956 0.975 0.854
Zajedno 0.834 0.730 0.796 0.660 0.869 0.759 0.818 0.707 0.885 0.780 0.844 0.752

N
ak

on
pr

oš
ir

en
ja

Small craft 0.974 0.848 0.921 0.747 0.979 0.874 0.935 0.768 0.983 0.877 0.937 0.801
Small Fishing Boat 0.767 0.388 0.599 0.485 0.692 0.424 0.600 0.530 0.688 0.518 0.640 0.573
Small Passenger Ship 0.910 0.874 0.917 0.798 0.907 0.910 0.937 0.830 0.961 0.904 0.946 0.860
Fishing Trawler 0.982 0.951 0.975 0.816 0.983 0.959 0.979 0.845 0.986 0.973 0.985 0.877
Large Passenger Ship 0.995 0.993 0.995 0.975 0.998 0.993 0.994 0.974 0.998 0.992 0.992 0.977
Sailing Boat 0.958 0.895 0.943 0.866 0.974 0.916 0.955 0.903 0.969 0.931 0.964 0.917
Speed Craft 0.835 0.801 0.845 0.680 0.861 0.850 0.883 0.740 0.901 0.869 0.904 0.786
Motorboat 0.748 0.467 0.606 0.500 0.780 0.557 0.668 0.580 0.842 0.633 0.745 0.647
Pleasure Yacht 0.878 0.762 0.852 0.743 0.928 0.768 0.871 0.798 0.904 0.815 0.893 0.829
Ferry 0.985 0.983 0.990 0.928 0.984 0.983 0.989 0.932 0.983 0.990 0.994 0.949
High-speed craft 0.956 0.967 0.980 0.866 0.978 0.972 0.985 0.888 0.951 0.978 0.988 0.907
Zajedno 0.908 0.812 0.875 0.764 0.915 0.837 0.891 0.799 0.924 0.862 0.908 0.829
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detekcijskog podskupa
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Slika C.1: Uporedan prikaz preciznost–odziv krivulja YOLO11n/m/s detektora treniranih
na početnom i proširenom SSMOT detekcijskom skupu podataka.
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D. Vizualizacije dodatnih TOP-6 rezultata ReID modela

U ovom dodatku prikazani su dodatni primjeri upita i pripadajućih TOP-6 rangiranih re-
zultata iz proširene galerije, dobivenih primjenom različitih ReID modela. Primjeri služe
kao dopuna glavnim rezultatima u radu te omogućuju detaljniji uvid u ponašanje modela u
zahtjevnijim scenarijima pretrage.

Slika D.1: Primjeri upita i pripadajućih TOP-6 rezultata iz proširene galerije, dobivenih
različitim ReID modelima (1).

179
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Slika D.2: Primjer upita i pripadajućih TOP-6 rezultata iz proširene galerije, dobivenih
različitim ReID modelima (2).
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Slika D.3: Primjer upita i pripadajućih TOP-6 rezultata iz proširene galerije, dobivenih
različitim ReID modelima (3).
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Uvod u podatkovnu znanost.

Poslijediplomski studij Elektrotehnike i informacijske tehnologije u polju računarstva
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