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MODEL DUBOKOG UCENJA ZA PRACENJE PLOVILA S FOKUSOM
NA RJESAVANJE PROBLEMA DUGOTRAJNIH OKLUZIJA

Sazetak:

Automatska detekcija 1 pracenje plovila predstavljaju jedno od vaznih istrazi-
vackih podrucja u razvoju suvremenih sustava za sigurnost i upravljanje po-
morskim prometom. Ogranicenja postojecih rjeSenja, zajedno s izraZzenim utje-
cajem ljudskog faktora, ukazuju na potrebu za razvojem pouzdanijih i visoko
autonomnih pristupa. U tom se kontekstu metode racunalnog vida 1 dubokog
ucenja, osobito konvolucijske neuronske mreZe, nameéu kao obeéavajuce rje-
Senje za analizu RGB videozapisa. Ipak, pradenje plovila ostaje sloZen za-
datak zbog dinami¢nih uvjeta morskog okruzenja, velikih varijacija u izgledu
plovila te Cestih 1 dugotrajnih okluzija, tijekom kojih detekcije izostaju, a odr-
Zavanje kontinuiteta putanja 1 identiteta plovila postaje znatno otezano. Do-
datni izazov predstavlja nedostatak javno dostupnih i standardiziranih skupova
podataka za pracenje plovila. Stoga je u sklopu disertacije kreiran Split Ship
MOT (SSMOT) skup podataka, koji obuhvaca komplementarne podskupove za
detekciju, reidentifikaciju i pracenje plovila, ukljucujuci realistine scenarije
mimoilaZenja i dugotrajnih okluzija. Na temelju SSMOT-a trenirani su i evalu-
irani modeli detekcije 1 reidentifikacije, te je evaluiran predlozeni VOc-SORT
algoritam praéenja s dvostupanjskom asocijacijom koja integrira geometrijske,
vizualne i dinamicke informacije radi smanjenja zamjena identiteta i fragmenta-
cije putanja. Dobiveni eksperimentalni rezultati ukazuju na poboljSane perfor-
manse pracenja u pogledu stabilnosti pracenja i ouvanja identiteta u odnosu na
postojece pristupe, osobito u scenarijima dugotrajnih okluzija, uz zadrZzavanje
mogucnosti rada u stvarnom vremenu. Time se ukazuje na potencijal predloze-
nog pristupa za daljnji razvoj autonomnih sustava pomorskog nadzora, kao 1 za
moguca proSirenja prema viSesenzorskim i1 robusnijim rjeSenjima u oteZanim

uvjetima vidljivosti.
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DEEP LEARNING MODEL FOR VESSEL TRACKING ADDRESSING
LONG-TERM OCCLUSION CHALLENGES

Abstract:

Automatic vessel detection and tracking represent one of the important research
areas in the development of modern systems for maritime safety and traffic ma-
nagement. The limitations of existing solutions, together with the substantial
role of the human factor, indicate the need for the development of more reliable
and highly autonomous approaches. In this context, computer vision and deep
learning methods, particularly convolutional neural networks, have emerged as
promising solutions for the analysis of RGB video data. Nevertheless, vessel
tracking remains a complex task due to the dynamic nature of the maritime
environment, large variations in vessel appearance, and frequent and long-term
occlusions, during which detections are missing and maintaining trajectory con-
tinuity and vessel identity becomes significantly more difficult. An additional
challenge is the lack of publicly available and standardized datasets for vessel
tracking. To address this issue, the Split Ship MOT (SSMOT) dataset was cre-
ated as part of this dissertation, comprising complementary subsets for vessel
detection, re-identification, and tracking, including realistic scenarios of vessel
encounters and long-term occlusions. Based on the SSMOT dataset, detection
and re-identification models were trained and evaluated, and the proposed VOc-
SORT tracking algorithm with a two-stage association strategy was evaluated,
integrating geometric, visual, and dynamic information to reduce identity swit-
ches and trajectory fragmentation. The experimental results indicate improved
tracking performance in terms of stability and identity continuity compared to
existing approaches, particularly in scenarios with long-term occlusions, while
maintaining real-time capability. These findings suggest the potential of the
proposed approach for further development of autonomous maritime surveil-
lance systems, as well as for extensions toward multi-sensor and more robust

solutions under challenging visibility conditions.
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1. UVOD

Automatska detekcija i pradenje plovila vazni su elementi sigurnosti i u¢inkovitosti global-
nog pomorskog prometa. S obzirom na kontinuiran rast pomorskih aktivnosti, raste i potreba
za naprednim tehnologijama koje omogucuju pravovremeno prepoznavanje i praéenje plovila
radi smanjenja rizika od nesreca, u€inkovitijeg upravljanja pomorskim prometom, suzbijanja
ilegalnih aktivnosti te zastite teritorijalnih voda i morskog okolisa [1, 2].

Sustavi za upravljanje pomorskim prometom uvelike se oslanjaju na tehnologije poput
radara i automatskog identifikacijskog sustava za detekciju, identifikaciju i pracenje plovila
[3, 4]. Radar (RAdio Detecting And Ranging) radi na principu odaSiljanja radio valova i
analize njihovih refleksija, Sto omogucuje precizno odredivanje udaljenosti, smjera i brzine
objekata unutar njegovog dometa [5, 6]. Automatski identifikacijski sustav (AIS) je auto-
nomni brodski primopredajnik koji koristi VHF (engl. Very High Frequency) radio kanale za
kontinuiranu razmjenu podataka izmedu plovila i luckih vlasti [7]. AIS se povezuje sa sen-
zorima za navigaciju te prenosi: 1) dinamicke podatke poput pozicije broda, kursa, brzine
1 navigacijskog statusa broda, 2) staticke podatke koji su uneseni prilikom ugradnje uredaja
poput imena broda, pozivnog znaka, duZine preko svega, Sirine i IMO (engl. International
Maritime Organisation) broja, 3) podatke o plovidbi kao §to su gaz broda, vrsta tereta, luka
odrediSta 1 vrijeme dolaska, 4) poruke vezane za sigurnost [8, 7].

Unatoc Sirokoj primjeni, sustavi temeljeni na radarima i AIS-u imaju odredena ograni-
¢enja. Pouzdanost radara moZe biti smanjena zbog vremenskih uvjeta poput magle, kiSe i
visokih valova, kao i zbog interferencija uzrokovanih prisutnos¢u drugih radarskih sustava
[9, 10]. Njegov domet osobito je ograniCen u priobalnim podrucjima i lukama s brojnim
preprekama te u prometnim pomorskim zonama [3]. Nadalje, radari nisu u moguénosti de-
tektirati manje objekte s loSim reflektiraju¢im svojstvima [11]. S druge strane, sva plovila ne
moraju nuzno imati ugraden AIS, primjerice brodovi za sport i razonodu te ribarski i ratni
brodovi. Takoder, AIS pojedinih plovila moze biti neispravan ili iskljucen [7]. Pored toga,
AIS podaci ranjivi su na manipulacije i namjerno laZiranje [12].

Ljudska pogreska odgovorna je za otprilike 70% pomorskih nesreca [8]. Trenutna rje-
Senja koja se oslanjaju na AIS 1 radarske sustave prilagodena su poluautomatskoj navigaciji
plovila te i dalje zahtijevaju znacajnu ljudsku intervenciju [13]. Velika potreba za ru¢nim
nadzorom i analizom povecava rizik od ljudske pogreSke, kaSnjenja u reakciji i nedosljed-

nosti u interpretaciji podataka. Kako bi se postigla veca razina autonomije i smanjila ovisnost
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o ljudskom faktoru, sve se viSe istrazuju napredne metode percepcije temeljene na racunal-
nom vidu. U tom kontekstu, duboko ucenje igra klju¢nu ulogu. Za razliku od tradicionalnih
metoda strojnog ucenja koje zahtijevaju ru¢no dizajnirane znacajke, tehnike dubokog uce-
nja automatski izdvajaju znacajke iz sirovih podataka [14]. Konvolucijske neuronske mreze
(engl. Convolutional Neural Networks, CNNs) [15] jedan su od klju¢nih pokretaca uspjeha
metoda dubokog ucenja u obradi vizualnih podataka poput slika i videozapisa. Arhitektura
konvolucijskih neuronskih mreZa inspirirana je receptivnhim poljima neurona u vizualnom
korteksu Zivotinja [16, 17], a dizajnirana je tako da se znaCajke uce hijerarhijski, komponi-
rajudi jednostavnije znacajke u one sloZenije.

Prema vrsti podataka koji se koriste, algoritmi za automatsku detekciju i pracenje plo-
vila se svrstavaju u tri kategorije: algoritme koji koriste slike (videozapise) snimljene stan-
dardnim kamerama, one koji se oslanjaju na podatke radara sa sintetickom aperturom (engl.
Synthetic Aperture Radar, SAR), te algoritme koji koriste satelitske snimke daljinskih istra-
Zivanja [18, 19]. Zbog velike veliCine i duljeg vremena prikupljanja, $to rezultira relativno
dugim vremenom obrade, SAR 1 satelitski snimci nisu optimalan izbor za primjene koje
zahtijevaju obradu u stvarnom vremenu. Nasuprot tome, Siroka dostupnost, niski troSkovi 1
dovoljna razina vizualne informativnosti ¢ine standardne RGB kamere obecavaju¢im rjese-
njem za ove vrste aplikacija [19, 4, 13]. Integracijom RGB kamera s algoritmima dubokog
ucenja otvara se put ka razvoju potpuno autonomnih sustava za pracenje u pomorstvu. Ova
doktorska disertacija fokusirana je na implementaciju algoritama za praéenje plovila u RGB
videozapisima, pri cemu se koriste metode dubokog ucenja za pouzdanu detekciju plovila te
ekstrakciju relevantnih vizualnih znacajki koje doprinose ucinkovitijem pracenju u dinamic-
nim i promjenjivim pomorskim uvjetima.

Iako automatska detekcija i praenje plovila imaju brojne prakticne primjene, ovo je
podrudje istraZivanja znatno manje zastupljeno u literaturi u usporedbi s istraZivanjima us-
mjerenima na pracenje pjesaka, automobila i sli¢nih objekata [4, 20]. Pracenje plovila na vi-
deozapisima sloZen je zadatak obiljeZen brojnim izazovima koji proizlaze iz sloZenih uvjeta
morskog okruzZenja, tehnickih ograniCenja 1 velike varijabilnosti izgleda plovila. Ono zah-
tijeva robustan sustav koji je otporan na promjenjive vremenske uvjete i uvjete na moru.
Losa vidljivost uzrokovana maglom, kiSom, sumrakom ili no¢nim uvjetima moze znacajno
smanjiti kvalitetu videozapisa. Odsjaji i refleksije suncCeve svjetlosti na vodi, kao i veliki
valovi te drugi plutajuéi objekti, dodatno oteZavaju detekciju plovila. Nadalje, u zadacima
pracenja koji ukljucuju objekte poput pjesSaka ili automobila, varijacije u veli€ini, izgledu i
kategorijama objekata znatno su manje u usporedbi s varijacijama prisutnima kod plovila [4].
Dodatan izazov predstavlja potreba za izvrSavanjem sloZenih algoritama pracenja u stvarnom
vremenu uz ograni¢ene hardverske resurse [21]. Uz navedene specifi¢ne izazove, algoritmi
pracenja plovila suoCavaju se i s opéim izazovima detekcije malih objekata poput plovila na

velikim udaljenostima od kamere, okluzije 1 reidentifikacije izgubljenih objekata.
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Jedan od najvecih izazova u pradenju objekata je problem okluzije, odnosno djelomi¢ne
ili potpune zaklonjenosti objekta nekim drugim objektom ili pozadinom. Ve¢ djelomicna
zaklonjenost objekta oteZava ekstrakciju kvalitetnih vizualnih znacajki za njegovu reidentifi-
kaciju [22], dok za vrijeme potpune zaklonjenosti objekta vizualna informacija u potpunosti
nedostaje. S obzirom na duljinu razdoblja zaklonjenosti, okluzije se obicno dijele na krat-
kotrajne i dugotrajne, pri ¢emu ne postoji jasno i jednoznacno definirana granica izmedu
tih dviju kategorija [23, 24, 25]. U slucaju pracenja plovila, dugotrajne okluzije se cesce
javljaju nego §to je to slucaj kod uobicajenog pracenja pjeSaka, primjerice u situacijama zak-
lonjenosti manjeg plovila nekim ve¢im plovilom koje se sporije kreée. Kada detekcija u tre-
nutnom okviru videozapisa nedostaje zbog zaklonjenosti, putanju objekta moguce je nado-
puniti grani¢nim okvirom predvidenim algoritmom za predvidanje sljedece pozicije objekta.
U mnogim algoritmima pracenja, za predvidanje sljedeée pozicije koristi se Kalmanov fil-
ter [26] koji pretpostavlja linearno kretanje objekata. Navedena pretpostavka je prihvatljiva
za vrijeme kratkotrajnih okluzija. Medutim, u slucaju dulje zaklonjenosti objekta, linearna
procjena moze postati izrazito nepouzdana zbog akumulacije pogreSke uzrokovane izostan-
kom novih mjerenja (detekcija) za aZuriranje parametara Kalmanovog filtera [27]. Iako su
performanse algoritama u situacijama kratkih zaklonjenosti znatno poboljSane, i dalje imaju
ogranicenu ucinkovitost u slucaju dugotrajnih okluzija, pri Cemu se uspjesno rjeSava manje
od 10 % okluzija duljih od tri sekunde [23]. To ukazuje na potrebu za daljnjim istraZivanjima
usmjerenima na poboljSanje performansi algoritama pracenja u takvim scenarijima.

Javno dostupni referentni skupovi podataka (engl. benchmark datasets) pruZaju standar-
diziranu osnovu za usporedbu razli¢itih modela i tehnika, poti¢uci transparentnost, reproduk-
tibilnost 1 napredak u istrazivanju [28]. Fokus velikog broja referentnih skupova podataka
za pracenje viSe objekata je na detekciji i pracenju pjeSaka [29, 30, 31, 32, 33]. Uvrije-
zila se evaluacija novih metoda pracenja upravo na takvim skupovima podataka, pri cemu
se ekstenzivno koriste skupovi iz MOT izazova [30, 31, 32, 33]!. Zbog aktualne popular-
nosti autonomne voznje, kreirani su i referentni skupovi podataka koji omoguéuju razvoj i
evaluaciju algoritama za pracenje pjeSaka 1 vozila [34, 35, 36, 37, 38, 39, 40]. Evaluacija
na navedenim skupovima podataka Cesto ne uspijeva adekvatno odraziti ogranicenja algo-
ritma za praéenje objekata u sluc¢ajevima dugotrajnih okluzija, budu¢i da su takvi scenariji
statistiCki rijetki [23]. S druge strane, nedostatak javno dostupnog i opCe prihvacenog skupa
podataka za pracenje plovila predstavlja prepreku daljnjem napretku u ovom podrucju istra-
Zivanja, ograniCavajuéi mogucnost objektivne usporedbe postoje¢ih metoda i razvoja novih.

Prethodna razmatranja ukazuju na ogranicenja u podrucju pracenja plovila, posebice u
kontekstu dugotrajnih okluzija i nedostatka odgovarajucih referentnih skupova podataka.
Upravo ta ogranicenja odreduju istrazivacki okvir ove disertacije, Ciji je cilj adresirati na-

vedene izazove i ponuditi doprinos u njihovom rjeSavanju.

I'https://motchallenge.net/
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1.1.

Hipoteza i znanstveni doprinos

Polazeci od identificiranih izazova u podrucju pracenja plovila u ovoj disertaciji formulirana

je sljedeca, glavna, istrazivacka hipoteza:

H: Moguce je razviti i implementirati novi algoritam za pracenje plovila koji ¢e imati

poboljSane performanse u odnosu na dosadasnja istraZivanja te biti otporniji na

dugotrajne okluzije.

Kako bi se glavna istraZivacka hipoteza mogla sustavno i empirijski provjeriti, ona je razlo-

Zena na pet pomo¢nih hipoteza koje se odnose na identificirane izazove u podrucju pracenja

plovila te na ocekivane u¢inke mogucih poboljsanja.

Hi:

H>:

Hs:

Hs:

Postojece metode pracenja plovila pokazuju smanjenu sposobnost ocuvanja identiteta

u uvjetima dugotrajnih okluzija.

Unaprjedenje kvalitete detekcija poboljsava opce performanse pracenja, ali ne rjesava

u potpunosti problem reidentifikacije plovila nakon okluzija.

Domenska prilagodba modela za reidentifikaciju plovila, provedena na podacima iz
pomorskog okruZenja, doprinosi pouzdanijem ocuvanju identiteta plovila u algorit-
mima pracenja u odnosu na koristenje modela treniranih iskljucivo na opéim skupo-

vima podataka, osobito u uvjetima dugotrajnih okluzija.

. Integracija vizualnih RelD znacajki s informacijama o kretanju unutar algoritma pra-

¢enja omogucuje pouzdaniju asocijaciju detekcija i putanja nakon dugotrajnih oklu-

zZija nego koristenje iskljucivo prostornih i kinematickih informacija.

Unaprjedenje postupka asocijacije detekcija i putanja moZe dovesti do poboljsanog

ocuvanja identiteta plovila tijekom dugotrajnih okluzija.

U kontekstu postavljenih hipoteza i definiranih istrazivackih ciljeva, provedeno istraZiva-

nje obuhvatilo je analizu postojecih pristupa, razvoj odgovarajuée metodologije te implemen-

taciju 1 eksperimentalnu evaluaciju novog algoritamskog rjeSenja. Kao rezultat tog procesa,

ostvarena su sljedeca dva glavna znanstvena doprinosa ove disertacije:

1.

Izrada referentne baze oznacenih slika i videozapisa za detekciju, reidentifikaciju i

pracenje plovila.

2. Razvoj algoritma za praéenje plovila na videozapisima s poboljSanim performan-

sama u slucaju dugotrajnih okluzija.
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1.2. Organizacija rada

U uvodnom poglavlju istaknuti su motivacija i kontekst istrazivanja, razmatraju se ogranice-
nja postojecih sustava za nadzor pomorskog prometa te se obrazlaze potreba za primjenom
metoda raCunalnog vida i dubokog uéenja u zadacima automatske detekcije i pracenja plo-
vila. Takoder, formulirane su istraZivacke hipoteze i1 definiran je znanstveni doprinos diser-
tacije. Zajedno s uvodnim poglavljem, doktorska disertacija je podijeljena na ukupno osam
poglavlja.

Drugo poglavlje daje teorijsku osnovu problema pracenja vise objekata. U poglavlju su
opisani osnovni pojmovi te je predstavljena kategorizacija algoritama za pracenje viSe obje-
kata. Detaljno su razradeni klju¢ni koraci MOT algoritama, te su opisani neki od popularnih
algoritama praéenja temeljenih na detekciji. Poseban dio poglavlja posvecéen je standardnim
evaluacijskim metrikama za pracenje viSe objekata koje se koriste za objektivnu procjenu
performansi algoritama. Na kraju poglavlja razmotreni su klju¢ni izazovi pracenja, ukljucu-
juci problem okluzije, zamjene identiteta i pracenje malih objekata.

Sustavan pregled relevantne znanstvene literature prikazan je u trecem poglavlju. U tom
poglavlju razmatraju se dosadasSnja istraZivanja iz podrucja automatske detekcije i praéenja
plovila, s posebnim naglaskom na problem okluzije pracenih objekata. Najprije se analizi-
raju postojeci skupovi podataka za detekciju i pracenje plovila, nakon cega slijedi pregled
radova usmjerenih na razvoj i primjenu algoritama za detekciju i pracenje plovila. Poglav-
lje zavrsava kritickom analizom postojecih pristupa i identifikacijom otvorenih izazova koji
motiviraju daljnje istraZivanje.

U cCetvrtom poglavlju opisan je dizajn i implementacija SSMOT (Split Ship MOT') skupa
podataka. Poglavlje detaljno prikazuje strukturu skupa podataka, koji se sastoji od detek-
cijskog podskupa, podskupa za reidentifikaciju te skupa videozapisa za pradenje plovila.
Analizirane su statistiCcke karakteristike pojedinih podskupova, pri ¢emu je posebna paZznja
posvecena analizi okluzija u podskupu za praéenje.

Peto poglavlje opisuje odabrani YOLO11 model za detekciju plovila. Poglavlje obu-
hvaca detaljan opis procesa treniranja detektora na SSMOT detekcijskom podskupu, uklju-
¢ujudi koriStene hiperparametre te tehnicke karakteristike racunalnog okruZenja. Nadalje,
provedena je evaluacija dobivenog modela primjenom standardnih metrika, te su analizirani
dobiveni rezultati.

U Sestom poglavlju opisani su reidentifikacijski modeli koriSteni za ekstrakciju vizualnih
znacajki (ResNet50 i OSNet), te postupak njihove implementacije i treniranja. Poglavlje
zavrSava evaluacijom dobivenih ReID modela i analizom postignutih rezultata.

Sedmo poglavlje predstavlja srediSnji doprinos ove disertacije. U njemu se uvodi predlo-
Zeni VOc-SORT algoritam pracenja s poboljSanim performansama u slu¢aju dugotrajnih ok-
luzija. Detaljno je opisan dizajn algoritma, klju¢ne prilagodbe u odnosu na postojece metode

te pojedini koraci njegova rada. Nadalje, provedena je usporedba performansi s postojeéim
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metodama, prikazani su rezultati evaluacije i ablacijske analize, te je dana opseZna rasprava
o utjecaju pojedinih komponenti algoritma, ulozi ReID modela i ograni¢enjima predloZenog
pristupa.

Osmo, zavr$no poglavlje donosi zakljucak rada, u kojem se saZimaju glavni rezultati i
ostvareni znanstveni doprinosi disertacije. Takoder se razmatraju i ogranicenja predloZenog

pristupa te se predlazu smjernice za buduca istraZivanja.



2. PROBLEM PRACENJA VISE OBJEKATA

Zahvaljujudi izrazenom komercijalnom i akademskom potencijalu, praéenje objekata pos-
talo je jednim od vaznijih istraZivackih podruc¢ja u domeni raunalnog vida [41, 42]. Proces
pracenja ukljucuje detekciju i identifikaciju objekata u svakom okviru (engl. frame) videoza-
pisa, uz oCuvanje konzistentnog identifikatora objekta tijekom cijelog snimka. lako detekcija
objekta iz okvira u okvir videozapisa pruza osnovne informacije o lokaciji i klasi objekta,
sama po sebi ne daje kontinuiranu informaciju o kretanju objekta kroz vrijeme koja je nuZna
za mnoge prakti¢ne primjene. Kako bi se steklo dublje razumijevanje dinamike kretanja

objekata, nuzno je primijeniti algoritme pracenja.

2.1. Kategorizacija algoritama pracenja

S obzirom na broj objekata koji se prati, razlikujemo metode pracenja jednog objekta (engl.
Single Object Tracking, SOT) i metode pracenja vise objekata (engl. Multiple Object Trac-
king, MOT). Metode pracenja jednog objekta, usmjerene su na pracenje jednog konkretnog
objekta tijekom cijelog videozapisa. Objekt, definiran u prvom okviru, detektira se 1 prati
kroz sve naredne okvire [41]. S druge strane, metodama za pradenje viSe objekata cilj je
locirati sve objekte od interesa te pratiti njihov identitet i putanje kroz dani videozapis. U
odnosu na pracenje jednog objekta, pracenje viSe objekata ukljucuje dva dodatna zadatka: 1)
odredivanje broja objekata koji se prate, a koji se mijenja tijekom vremena, 2) odrZavanje
konzistentnog identiteta objekata tokom cijelog videozapisa [43].

Algoritmi pracenja viSe objekata mogu se podijeliti prema razli¢itim kriterijima. S obzi-

rom na nacin obrade videozapisa, MOT algoritmi dalje se dijele na [43]:

* online algoritme, koji prilikom obrade trenutnog okvira koriste isklju¢ivo informacije

iz prethodnih okvira,

* offline (batch) algoritme, koji uzimaju u obzir informacije iz proslih, ali i iz buduéih

okvira videozapisa.

Offline metode generalno daju bolje rezultate zbog dostupnosti globalne informacije iz ci-
jelog videozapisa. Ipak, njihova primjena nije moguca u aplikacijama koje zahtijevaju iz-

vrSavanje u stvarnom vremenu jer tada buduci okviri nisu dostupni [44, 45]. Stoga se one
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uglavnom primjenjuju za analizu snimljenih videozapisa [46]. Za aplikacije koje zahtijevaju
obradu u stvarnom vremenu, koriste se iskljucivo online algoritmi pracenja.

MOT algoritmi mogu se kategorizirati i prema nacinu inicijalizacije objekata koji se
prate. Prema tom kriteriju, razlikuju se algoritmi koji koriste detekcije za inicijalizaciju
i oni koji ne koriste detekcije, vec¢ zahtijevaju ru¢nu inicijalizaciju fiksnog broja objekata
u prvom okviru videozapisa [47, 43]. Algoritmi koji koriste detekcije mogu automatski ot-
kriti nove objekte koji ulaze u scenu te prestati pratiti one koji iz nje izlaze. Medutim, njihova
ucinkovitost uvelike ovisi o kvaliteti detekcija koje se koriste. S druge strane, algoritmi koji
zahtijevaju rucnu inicijalizaciju ne ovise o detekciji, ali su manje fleksibilni jer zahtijevaju
unaprijed definirani broj objekata i ne mogu se automatski prilagoditi novim objektima koji
se u sceni pojave naknadno. Zbog ovih ograni¢enja nisu prikladni za sloZenije scenarije s
promjenjivim brojem objekata.

Prema nacinu na koji pristupaju zadatku pracenja objekata, MOT algoritmi najcescée se

dijele u tri osnovne skupine [48]:
* algoritme temeljene na detekciji (engl. Tracking-By-Detection, TBD),
* algoritme zajednicCke detekcije i pracenja (engl. Joint-Detection and Tracking, JDT),
* algoritme temeljene na transformerima.

Algoritmi temeljeni na detekciji odvajaju detekciju i1 pracenje u dvije nezavisne kompo-
nente, Sto ih ¢ini intuitivnijima i jednostavnijima za implementaciju [49]. Zahvaljujuéi na-
prednim modelima za detekciju, koji se mogu samostalno optimizirati, algoritmi temeljeni na
detekciji Cesto postizu visoku razinu tocnosti [50] zadrZavajuci raCunalnu u¢inkovitost nuznu
za primjene u stvarnom vremenu [51]. Medutim, njihova osjetljivost na pogresne i nedos-
tajuce detekcije moze dovesti do znacajne degradacije u performansama algoritma pracenja.
S druge strane, algoritmi zajednicke detekcije i pracenja integriraju detekciju i pracenje u
jedinstveni model koji istovremeno obavlja obje zadace, ¢ime se postize veca koherentnost
i poboljsane performanse u sloZenijim scenarijima, poput onih s nedostaju¢im detekcijama
objekata [52]. Ipak, ovakav pristup ima manju fleksibilnost te zahtijeva sloZenije modele,
koji su racunalno zahtjevniji 1 sporije konvergiraju tijekom treniranja [53].

U posljednjem desetljeéu, transformerske neuronske mreze [54], poznate kao transfor-
meri, privukle su znacajnu paZnju i unutar podruc¢ja racunalnog vida, te su pokazale po-
tencijal za primjenu u zadacima pracenja viSe objekata [49]. Izvorno razvijeni za zadatke
obrade prirodnog jezika, transformeri su pokazali izvanredne rezultate u prepoznavanju da-
lekih ovisnosti i sloZenih odnosa u sekvencijalnim podacima. Takve karakteristike ¢ine ih
prikladnima i za MOT zadatke, gdje je nuzno razumijevanje prostornog i vremenskog kon-
teksta za precizno pracenje viSe objekata. Primjenom mehanizama pozornosti (engl. at-

tention), transformeri mogu ucinkovito procesirati i povezati informacije iz razlicitih okvira
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videozapisa, ¢ime se adresiraju izazovi poput okluzija i interakcija medu objektima u slo-
Zenim scenama [55]. Medutim, glavni nedostaci transformera su njihova visoka raCunalna
sloZenost i nedovoljna prilagodenost specificnostima raCunalnog vida [56, 49, 57]. Perfor-
manse sustava koji koriste transformere joS uvijek zaostaju za najsuvremenijim metodama
temeljenim na detekciji, kako u aspektu toCnosti tako i u pogledu vremenske ucinkovitosti
[27]. Usporedba karakteristika MOT algoritama temeljenih na transformerima, u odnosu na

TBD 1 JDT pristupe, prikazana je u Tablici 2.1.

Tablica 2.1: Usporedba karakteristika tri razlicite kategorije MOT algoritama.

Vrsta Predstavnici Prednosti Nedostaci
SORT [58]
DeepSORT [59] modularnost,
ByteTrack [60] fleksibilnost, . . )
TBD BoT-SORT [61] jednostavnost, er(l ac?]ng ((;VIS?(O?F ©
StrongSORT [62] efikasniji za valiteti deteketja
OC-SORT [27] online pradenje
BoostTrack [63]
bolja integracija
Tracktor++ [64] 1nform§1.<.:13a, manja fleksibilnost,
JDT CenFerTrack [65] r.Obust ! na” sloZenija implementacija
FairMOT [66] gubitak detekcija, P . A
JDE [67] vitemodularno vedi raCunalni zahtjevi
zajednicko ucenje
znatajna visoka racunska
paralelizacija sloZenost, potreban
TransTrack [68] bolje performar;se velik broj podataka i
. TrackFormer [69] . . resursa za treniranje,
Transformeri u slozenim scenama, . . .
TransCenter [57] bogata globalna i sloZzena implementacija
TransMOT [70] Kontekstualna i optilhnizacija,.nisu pczt.puno
informacija prilagodeni podrucju

racunalnog vida

2.2.  Osnovni koraci MOT algoritma

Zahvaljujuci znaCajnom napretku i iznimnim postignu¢ima u podrucju detekcije objekata,
metode koje koriste detekcije postale su standardnim pristupom u praéenju vise objekata
[48]. Stoga je u nastavku fokus iskljucivo na njima. Unatoc velikoj raznolikosti, vecina al-
goritama za pracenje viSe objekata na neki nacin kombinira sljedece korake, bilo djelomi¢no
ili u cijelosti [44, 47]:

(a) Detekcija objekata: U danom ulaznom okviru, detektor identificira i lokalizira objekte

od interesa koriste¢i pravokutne grani¢ne okvire.

9
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(b) Predvidanje sljedece pozicije: Za svaku aktivnu putanju, buduca pozicija objekta pro-

cjenjuje se temeljem analize njegovog trenutnog stanja i prethodnih kretanja.

(c) Ekstrakcija znacajki: Vizualne karakteristike i znaCajke kretanja izdvajaju se iz detek-

cija 1 putanja objekata primjenom jednog ili viSe razlicitih ekstraktora.

(d) Izracun sli¢nosti: Dobivene znacajke i predvidene pozicije objekta koriste se za izracun

sli¢nosti (udaljenosti) izmedu novih detekcija i postojecih putanja.

(e) Asocijacija: Temeljem dobivenih vrijednosti sli¢nosti (udaljenosti) detekcije se pove-

zuju s putanjama, ¢ime se detekcijama dodjeljuje identifikator odgovarajuceg objekta.

(f) Upravljanje putanjama: AZuriraju se stanja postojecih putanja, incijaliziraju se nove

putanje i zavrSavaju neaktivne putanje.

Korak (a) 1 koraci (b) - (f) mogu se promatrati kao dvije nezavisne komponente algori-
tama temeljenih na detekciji: komponenta za detekciju 1 komponenta za pracenje. Kvaliteta
detekcija koje se koriste za pradenje ima znacajan utjecaj na performanse algoritma teme-
ljenog na detekciji. Kako bi se omogucila transparentna usporedba razli¢itih komponenti za
pracenje, neki MOT izazovi pruzaju pristup javnim detekcijama [31, 33]. Time se stavlja
fokus na razvoj inovativnih komponenti za praenje, umjesto na implementaciju mo¢nih de-
tektora. Slika 2.1 ilustrira uobicajen redoslijed navedenih koraka u algoritmu za pracenje. S
druge strane, u algoritmima zajednicke detekcije i pracenja, odredeni koraci (b) - (f) se inte-
griraju s detekcijom iz koraka (a). NajceScCe je to integracija detekcije i ekstrakcije znacajki
[71, 67, 66] ili detekcije i predvidanja sljedece pozicije objekta [64, 72, 65].

..... A\
ulazni okvir (a) e e ‘—k ‘k
F, detekcija S 3 N
objekata N —> — -
3 £ £ &9
o=
y y p— (c) (f) t-3 t—2 t
-— ‘_‘ -— A k ekstrakcija upravljanje ! 3 !
EM\ znadajki (d)+ (e) putanjama putanje
- " — " - n asocijacija Te
& B By
r__) izracunatih
slicnosti
t—-3 t—-2 t-1 t—-3 t-2 t—1 t
putanje (b)
T predvidanje
sljedece
pozicije

Slika 2.1: Uobicajeni koraci MOT algoritma temeljenog na detekciji.
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2.2.1. Detekcija objekata

Detekcija objekata vazan je zadatak racunalnog vida koji obuhvaca prepoznavanje, precizno
lociranje i klasifikaciju relevantnih objekata unutar digitalne slike ili videozapisa. Svaka de-
tekcija opisana je trima atributima: klasom kojoj pripada prepoznati objekt, pravokutnim
grani¢nim okvirom koji odreduje njegov polozaj unutar slike i razinom pouzdanosti (engl.
confidence score) detektora u dano predvidanje.

Suvremeni algoritmi za pracenje u velikoj mjeri se oslanjaju na metode dubokog ucenja
u fazi detekcije, napustajudi tako tradicionalne pristupe koji se temelje na ru¢no definiranim
znacajkama. Nasuprot tome, koriste duboke konvolucijske neuronske mreZe [15], koje auto-
matski uce sloZene semanticke reprezentacije iz podataka, ¢ime se postiZze veca preciznost i
robusnost detekcija [73].

Detektori zasnovani na dubokom ucenju dijele se na dvostupanjske (engl. rwo-stage)
i jednostupanjske (engl. one-stage) detektore. Dvostupanjski detektori prvo generiraju
prijedloge regija unutar slike koje bi mogle sadrzavati objekte, a zatim te regije klasificiraju i
regresijom prilagodavaju grani¢ne okvire objekata. Nasuprot tome, jednostupanjski detektori
direktno iz ulaza predvidaju klase i grani¢ne okvire, izostavljajuci fazu generiranja prijedloga
regija, Sto rezultira brZzim izvodenjem [74]. Pregled najpoznatijih predstavnika ovih dviju
kategorija detektora dan je u Tablici 2.2.

Izbor odgovarajuéeg detektora kljucan je za ucinkovit rad sustava za pracenje objekata.
Razliciti detektori primjenjuju se ovisno o zahtjevima to¢nosti i vremena izvodenja. Neko-
liko metoda pracenja temelji se na dvostupanjskom Faster R-CNN detektoru [75, 58, 59, 76],
koji obi¢no postize vecu to¢nost detekcije u usporedbi s jednostupanjskim pristupima. S
druge strane, neki radovi [77, 78, 79] koriste jednostupanjski SSD detektor, koji omoguéava
brzu detekciju uz neSto manju preciznost. Takoder, CenterNet detektor sve se ¢eS¢e primje-
njuje [80, 66, 65] zahvaljujuci svojoj efikasnosti i jednostavnosti, Sto ga ¢ini pogodnim za
razlicite scenarije pracenja. Zahvaljujuci optimalnom balansu izmedu to¢nosti i brzine izvr-
Savanja, YOLO detektor se afirmirao kao najpopularniji detektor za pracenje objekata, Sto
pokazuju brojne recentne studije [81, 62, 60, 61, 82, 83].

2.2.2. Predvidanje sljedece pozicije

Algoritmi za detekciju objekata koji se koriste u okviru pracenja vise objekata nisu bez ne-
dostataka. Cesto se suolavaju s izazovima poput laZno pozitivnih i nepreciznih detekcija,
koje su obi¢no posljedica losih uvjeta okoline poput loSeg osvjetljenja, prisutnosti sjena, dje-
lomi¢ne zaklonjenosti objekta ili drugih faktora. Osim toga, moguce je da detektor uopce ne
registrira objekt, osobito u situacijama potpune zaklonjenosti, Sto moZe rezultirati prekidom
putanje tog objekta. Kako bi se prevladali navedeni problemi i poboljSali rezultati pracenja,
primjenjuju se razli¢ite metode za predvidanje buduceg stanja objekta. Te metode omogu-

¢uju nadopunu putanje objekta u slucajevima kada detekcija nedostaje i korekciju putanje u

11
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Tablica 2.2: Pregled popularnih dvostupanjskih i jednostupanjskih detektora.

Vrsta Predstavnici Godina

Kratki opis

R-CNN

Selektivna pretraga generira prijedloge regija iz ulazne
slike, iz kojih CNN ekstrahira znacajke za klasifikaciju
objekata i1 korekciju predlozenih grani¢nih okvira.

CNN prvo izdvaja znacajke iz cijele slike, a zatim se-
lektivna pretraga generira prijedloge regija, koje Rol
pooling svodi na fiksne dimenzije.

Selektivnu pretragu zamjenjuje neuronskom mreZom
za generiranje prijedloga regija (engl. Region Propo-
sal Network, RPN), ¢ime se znatno ubrzava proces de-
tekcije.

ProSiruje Faster R-CNN dodavanjem segmentacije
objekata uz detekciju, koriste¢i dodatni izlaz za se-
manticku masku objekta.

Dijeli ulaznu sliku na mrezu Celija i za svaku Celiju
predvida granic¢ne okvire i vjerojatnosti klasa, koris-
te¢i samo jedan prolazak kroz neuronsku mrezu.

Takoder koristi jedan prolazak kroz mrezu, ali koristi
viSe slojeva razlicitih rezolucija za predvidanje granic-
nih okvira i klasa, $to omogucuje u¢inkovitije prepoz-
navanje objekata razliitih veliCina.

Koristi piramidalnu mrezu znacajki (engl. Feature
Pyramid Network, FPN) za izdvajanje znacajki na vise
razina i primjenjuje fokusni gubitak (engl. focal loss)
kojim se rjeSava problem neravnoteze klasa.

Pristup detekciji u kojem je svaki objekt predstav-
ljen samo jednom srediSnjom tockom. Model generira
mapu kljucnih tocaka koja sadrZi informacije o loka-
ciji srediSta objekata, njthovom pomaku te visini i $i-
rini grani¢nog okvira.

(84] 2014.
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V
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%)
S
S
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87] 2017.
YOLO
(88] 2016.
SSD
[89] 2016.
S RetinaNet
3
B [90] 2017.
Y]
N
@)
CenterNet
91] 2019.
EfficientDet
(92] 2020.

Skalabilni model za detekciju koji kombinira dvos-
mjernu piramidalnu mreZu znacajki (engl. Bidirecti-
onal Feature Pyramid Network, BiFPN) za uinkovitu
fuziju znacajki na razli¢itim razinama i skalirajucu ar-
hitekturu temeljenu na EfficentNetu.

slucajevima kada je lokalizacija objekta neprecizna [93].

Osnovna svrha ovog segmenta algoritma za pracenje jest procjena vjerojatne pozicije

objekta u narednom okviru videozapisa, oslanjajuci se pri tom na njegovo trenutno stanje i

prethodne obrasce kretanja. U ovom kontekstu, Kalmanov filter 1 njegove modifikacije naj-
cesce se koriste za predvidanje buduce pozicije objekta [81, 58, 59, 62, 60, 61, 94, 75, 66, 67].
Alternativno, umjesto Kalmanovog filtera, moguce je koristiti Cesti¢ni filter (engl. particle
filter) [95, 96, 97] ili modele temeljene na dubokom ucenju, kao §to su RNN i LSTM ne-
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uronske mreZe [98, 99, 100, 93], kao i arhitekture temeljene na transformerima [68, 101].
Medutim, ovi pristupi uvode dodatnu sloZenost u algoritam pracenja u vidu potrebe za do-
datnim treniranjem kompleksnih modela i povecane racunske slozenosti, u usporedbi s Kal-
manovim filterom koji je poznat po svojoj jednostavnosti, raunalnoj efikasnosti i skromnim

zahtjevima za resursima.

Kalmanov filter

Kalmanov filter [26] rekurzivni je algoritam za procjenu stanja diskretnog dinamickog sus-
tava temeljem matematickog modela sustava i niza mjerenja koja u sebi sadrze Sum. Termin
"filter" proizlazi iz ¢injenice da ovaj algoritam prilikom procjene stanja filtrira Sum iz po-
dataka [102]. Tijekom vremena, Kalmanov filter kontinuirano poboljSava procjene stanja,
smanjujuci utjecaj Suma i nesigurnosti.
Matematicki model formalno opisuje kako se stanje sustava mijenja tijekom vremena te
je obi¢no definiran s:
X, = FiXi—1 + By +wy, (2.1)

gdje je F; € R™*" tranzicijska matrica iz stanja u trenutku r — 1 do stanja u trenutku ¢,
u; € R™ kontrolni, vanjski ulaz koji moZe neposredno utjecati na stanje sustava, B; € R™*"
matrica koja opisuje kako kontrolni ulaz utjece na stanje sustava, w; € R procesni Sum koji

u obzir uzima nesavrsenosti modela sustava. Mjerenje z, € R" u trenutku ¢ opisano je s:
z; = Hix; + vy, (2.2)

pri Cemu H; € R, x,, oznacava matricu koja preslikava stanje sustava u prostor mjerenja,
a v; € R™ Sum mjerenja. Pretpostavka je da su procesni Sum i Sum mjerenja nezavisne,

normalno distribuirane slucajne varijable za koje vrijedi [102, 103]:
v ~N(0,Q;), w,~N(,R,), (2.3)

gdje su Q; € R { R, € R"™*" pozitivno definitne matrice kovarijance procesnog Suma i

Suma mjerenja, redom.

Napomena. n,,n;,n, € N, gdje n, oznacava broj stanja u vektoru stanja, n, broj razlicitih

mjerenja koja pristiZu u svakom koraku, a n, broj elemenata kontrolnog, vanjskog ulaza.

Kalmanov filter u svakoj iteraciji stanje dinamickog sustava procjenjuje u dva koraka.
Prvo se, temeljem prethodnog stanja iz koraka ¢t — 1 i matematickog modela sustava, raCuna
a priori procjena X;,_| € R™ sljedeceg stanja sustava i odgovarajuca matrica kovarijance
a priori pogreske procjene P,;_| € R™"x. Zatim se, u drugom koraku, apriori pretpostavke
korigiraju temeljem novih, pristiglih mjerenja Sto rezultira poboljSanom a posteriori procje-

nom stanja X,; € R™ i matricom kovarijance a posteriori pogreske procjene P, € R"*"x.

13
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JednadZbe Kalmanovog filtera stoga se mogu podijeliti na dvije grupe:

’A‘t\tfl = Fti‘tfl\tfl + Bru;

predikcija . (2.4)
Pt|,_1 = Fth—1|t—1Fz + Qt
K = Pt|t—1HtT (HtPt|t—lHtT ‘I'Rt)il

korekcija Ker = Xyjp—1 + K (2 — HiXpp—1) 2.5)

Pt|t = (I_KIHI)PW*I

Kalmanovo pojacanje K; € R™*"= iz (2.5) je odabrano tako da minimizira kovarijancu a
posteriori pogreske, osiguravajuci tako optimalnost Kalmanovog filtera uz pretpostavke line-
arnosti i Gaussove distribucije Suma. Ono odreduje utjecaj mjerenja z;, u odnosu na predvi-
danje X;, 1 prl izraCunu aZuriranog stanja sustava X, u korektivnom koraku. Nakon svakog
para koraka predikcije i korekcije, postupak se ponavlja uz koriStenje dobivenih a posteriori
procjena prilikom predvidanja novih a priori procjena. Cijeli proces rada Kalmanovog filtera

shematski je prikazan na Slici 2.2.

Ztjt-1
By
KONTROLNI
ULAZ
Ut PREDIKCIJA KOREKCLIA MJERENJE
z 05 K = Ijt‘tletT(Htpﬂt—lHtT + Rt)71
Y Eyp—1= Fedy1j—1+ By byt 1+ Kot — Hidbge 1) %
| ' t|t=Lt[t— - ti—
: iI:0,0 . 'D B‘t71 — FtPt*l|t—1F|tT + Qt
Poo Py = (I — K,H,)Pyy 4
INICIJALNE \
VRIJEDNOSTI .
Tt—1,t—1
P14 ~
t—t—1 o
Lt
Py,

Slika 2.2: Dijagram Kalmanovog algoritma.

U kontekstu pradenja viSe objekata, mjerenja u trenutku ¢ odgovaraju detekcijama obje-
kata u okviru t danog videozapisa. Detekcije se obi¢no opisuju vektorom z = (x¢, y¢, w, h, ¢),
gdje (x¢, y¢) predstavljaju koordinate sredista, w i A Sirinu i visinu grani¢nog okvira, a ¢ po-
uzdanost u danu detekciju [58, 27]. Vektor stanja sustava Kalmanovog filtera, koji se koristi
u algoritmima pracenja viSe objekata, obi¢no sadrzi informacije o poloZaju i dimenzijama
objekta, kao i o brzini promjene tih vrijednosti. Na primjer, SORT [58] koristi vektor sta-

nja X = (x¢, Ye, @, 1, X¢, Ye, @), dok algoritmi poput DeepSORT-a [59], ByteTrack-a [60],
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StrongSORT [62] i FairMOT-a [66] koriste X = (xc, ye, 7, h, X¢, Ye, 7, h). S druge strane,
BoT-SORT [61] vektor stanja definira kao X = (xc, y¢, h, W, X, Ye, h, W). Ovdje a=w-h

predstavlja povrSinu grani¢nog okvira, a r = 3 omjer Sirine i visine okvira.

Generalizacije Kalmanovog filtera

U sklopu GIAOTracker [104] algoritma pracenja predstavljena je modifikacija Kalmanovog
filtera, NSA (Noise Scale Adaptive) Kalman, koji prilagodava kovarijancu Suma mjerenja u
skladu s pouzdanoscu detekcija:

R = (1—c)Ry, (2.6)

gdje je R; unaprijed postavljena konstantna kovarijanca Suma, a ¢; pouzdanost detekcije. Sto
je pouzdanost ¢; veca, to R, poprima manje vrijednosti, Sto implicira da ¢e u korektivnom
koraku, tijekom aZuriranja stanja sustava, veca teZina biti stavljena na mjerenje, odnosno
detekciju [62].

S obzirom na to da Kalmanov filter podrazumijeva linearno kretanje objekta, $to ne mora
uvijek biti slu€aj, razvijene su inacice originalnog algoritma koja su prikladne za procjenu
stanja nelinearnih sustava: proSireni Kalmanov filter (engl. Extended Kalman Filter, EKF)
[105] i Unscented varijanta Kalmanovog filtera (UKF) [106]. EKF linearizira nelinearne
modele sustava i mjerenja koriste¢i Taylorov razvoj prvog reda. Medutim, ovaj pristup moze
dovesti do loSe aproksimacije u sustavima s jako izrazenom nelinearnosti buduéi da se ¢la-
novi viSeg reda zanemaruju [107, 108]. S druge strane, UKF zaobilazi derivacije i koristi
transformaciju koja se temelji na preciznom odabiru sigma toCaka iz distribucije stanja i
njihovoj propagaciji kroz modele sustava i mjerenja, Sto je ¢ini robusnijom u slucajevima
jakih nelinearnosti [109], ali uz puno vece racunalne zahtjeve. No, navedeni pristupi pret-
postavljaju Gaussovu distribuciju i zahtijevaju unaprijed definirane obrasce kretanja [27]. S
druge strane, Cesticni filter (engl. particle filters) generalizira Kalmanov filter na probleme
procjene stanja nelinearnih sustava ¢ija distribucija ne mora nuzno biti Gaussova [110] kori-
Stenjem skupa Cestica i pridruzenih normaliziranih teZina za procjenu funkcije gustoée vje-
rojatnosti stanja sustava, ali su raCunski vrlo zahtjevni [111]. Zbog toga se navedene metode
rijetko koriste u zadacima vizualnog pracenja viSe objekata, u kojima i dalje prevladava stan-
dardni Kalmanov filter [27].

2.2.3. Ekstrakcija znacajki

Ekstrakcija znacajki kljucan je korak MOT algoritma koji omogucuje identifikaciju i razli-
kovanje objekata, Sto je neophodno za njihovo pracenje kroz vrijeme. Ovaj korak ukljucuje
izdvajanje relevantnih informacija koje opisuju objekt, a koje se zatim koriste za asocijaciju
detekcija iz razli¢itih okvira videozapisa s istim objektom. Stoga je od presudne vaznosti

kreirati znacCajke koje su robusne na promjene izgleda istog objekta tijekom vremena, a is-
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tovremeno dovoljno diskriminativne da jasno razlikuju razli¢ite objekte. Znacajke koje se
najcesce koriste ukljucuju one vezane uz vizualne karakteristike objekta poput boje, oblika
ili teksture, te znacajke koje kodiraju svojstva kretanja objekta kao $to su brzina, pozicija
1 akceleracija, zajedno s prostornim znacajkama poput orijentacije, udaljenosti i dimenzije
objekta. Iako razliCite vrste znacCajki pruZaju komplementarne informacije, one se obi¢no

promatraju zasebno te se naknadno kombiniraju prilikom izracuna sli¢nosti [112, 75, 59].

Vizualne znacajke

Zbog svoje sposobnosti da automatski izvlace sloZene znacajke iz ulaznih podataka, konvo-
lucijske neuronske mreZe postale su vodeéa metoda za ekstrakciju vizualnih znacajki u
MOT algoritmima [44]. Slika 2.3 prikazuje proces ekstrakcije vizualnih znacajki detekcija
jednog okvira videozapisa pomocu konvolucijske neuronske mreze. Detekcija D; Salje se na
ulaz konvolucijske mreZe, koja koristi niz konvolucijskih slojeva i slojeva saZimanja za iz-
dvajanje znacajki iz slike, postepeno napredujuci od jednostavnijih ka sloZenijima. Na kraju
mreZe, potpuno povezani sloj [112, 113, 114] ili, alternativno, sloj globalnog prosjecnog sa-

Zimanja (engl. Global Average Pooling) [115, 116] pretvara konvolucijske znacajke u realni

vektor f(D;) € R" fiksne duljine, koji numericki reprezentira kljucne karakteristike ulazne
slike.

—~> D, E —> (r
D [} (]

Slika 2.3: Ekstrakcija vizualnih znacajki detekcija pomocu konvolucijske neuronske mreZe.

Jedan od prvih primjera primjene konvolucijskih znacajki za pradenje objekata opisan
je u [112], gdje autori koriste predtreniranu konvolucijsku neuronsku mrezu kako bi izvukli
4096-dimenzionalni vektor znacajki iz svakog grani¢nog okvira. Dobiveni vektori se za-
tim reduciraju na 256 dimenzija koriStenjem PCA algoritma [117]. Pojedini istraZivaci za
ekstrakciju vizualnih znacajki u MOT algoritmima koriste standardne arhitekture konvolu-
cijskih neuronskih mreza, poput GooglLeNet [75, 118, 119, 120], ResNet [100, 121, 122]
1 VGG [123, 124, 93] arhitektura. Vecinom se radi o neuronskim mreZama predtrenira-
nim na velikim skupovima podataka, poput ImageNet [125] skupa podataka za klasifikaciju
[121, 123, 124], koje se naknadno prilagodavaju specificnostima zadatka od interesa, od-

nosno primjenjuju metodu ucenja prijenosom znanja (engl. transfer learning).
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Drugi pristup, koji se takoder zasniva na konvolucijskim neuronskim mrezama, je ek-
strakcija znacajki pomocu sijamskih neuronskih mreza koje se koriste za ucenje sli¢nosti.
Sijamske neuronske mreZe [126] najcesée se sastoje od dvije ili tri identiCne podmreZe
koje se zajedno treniraju i kojima se teZine za vrijeme treniranja zrcalno azuriraju. Ilustra-

cija sijamskih neuronskih mreza prikazana je na Slici 2.4.

kontrastivni gubitak trojni gubitak

T

i)
I I [ ) I
f(I) f(I2) f(Ih) (1) f(I3)
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Slika 2.4: Sijamska neuronska mreZa s dvije podmreZe (a) i s tri podmreZe (b).

Kada se koriste dvije podmreZe, sijamska neuronska mreza na ulaz prima par slika i

izraCunava kontrastivni gubitak (engl. contrastive loss) [127]:

L) =y 5 1F0) = B+ (1) g max {0, m— | f(h) ~ FB) Y, @)

gdje je m > 0 unaprijed zadana margina koja odreduje radijus sli¢nosti, y = 1 za slike istog
objekta (sli¢ne slike), dok je y = 0 za razlicite. U slucaju koriStenja tri podmreZe, na ulaz
sijamske mreZe $alju se tri slike: temeljna slika (engl. anchor) (1), pozitivni primjer (I3)
slican temeljnoj slici i negativan primjer (;) koji se od nje razlikuje. Tijekom treniranja

minimizira se trojni gubitak (engl. triplet loss) [128]:

LI, by 1) =max{0, || f(l) = f(I)5 = | f () = f(I) |3 +m} (2.8)

U oba slucaja, cilj je isti: smanjiti udaljenost vektora znacajki sli¢nih (pozitivnih) primjera i
istovremeno povecati udaljenost vektora znacajki razliitih (negativnih) primjera.

U kontekstu algoritama za pracenje viSe objekata, Kim i suradnici [129] koriste konvo-
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lucijsku podmreZu sijamske neuronske mrezZe, treniranu uz kontrastivni gubitak, kako bi iz
ulazne slike izdvojili vektor znacajki. Varijante sijamskih neuronskih mreZa koje takoder
primaju dva ulaza, ali ne koriste klasi¢ni kontrastivni gubitak, primijenjene su u radovima
[130, 131]. S druge strane, Zhou i suradnici [132] koriste podmreZu sijamske neuronske
mreZe trenirane s trojnim gubitkom kako bi iz ulazne slike izdvojili 128-dimenzionalni vek-
tor znacajki. U radu [133], za ekstrakciju vektora znacajki koristena je GoogleNet pod-
mreza sijamske neuronske mreze uz trojni gubitak. Drugi pristup predlaze koriStenje pod-
mreZe sijamske mreZe s poboljSanom inacicom trojnog gubitka (SymTriplet) [134], koja

uzima u obzir 1 udaljenost izmedu vektora znacajki negativnog i pozitivnog primjera, od-

nosno || f(I1) — f(B)|,.

Kombinacija razlicitih vrsta znacajki

U cilju poboljSanja robusnosti i preciznosti algoritama za pracenje objekata, istraZivaci u ra-
dovima [75, 94, 135] kombiniraju vizualne znacajke dobivene konvolucijskim neuronskim
mrezama s informacijama o kretanju i obliku objekta. Yu i suradnici [75] integriraju znacajke
dobivene Googl.eNet konvolucijskom mreZom s prostornim znacajkama koje opisuju kreta-
nje 1 oblik objekta dobivenih pomocu atributa grani¢nih okvira predvidenih Kalmanovim
filterom i novih detekcija. U [94], vizualne znaCajke dobivene konvolucijskom neuronskom
mrezom koriste se zajedno sa znacajkama koje opisuju veli€inu, poziciju i dinamiku kretanja
objekta. Bae 1 Yoon [135] takoder predlazu kombinaciju konvolucijskih znacajki sa znacaj-
kama modela kretanja i oblika objekta koji se prati. Vizualne znacajke dobivene rezidualnom
konvolucijskom mrezom se u [59] koriste zajedno s informacijama o kretanju. NeSto dru-
gacliji pristup predstavljen je u [93], gdje se vizualne znacajke i1 znacajke kretanja izdvajaju
zasebno koriStenjem konvolucijske VGG16 mreze 1 LSTM mreZe, a zatim se integriraju u

jedinstveni vektor znacajki pomocu Metric-Net mreZe trenirane s trojnim gubitkom.

2.2.4. Mjere sli¢nosti

Kako bi se detekcije iz novog okvira videozapisa mogle uspjeSno povezati s odgovarajuéim
prethodno pracenim objektima u koraku asocijacije, potrebno je procijeniti njihovu medu-
sobnu sli¢nost ili, ekvivalentno, udaljenost. Ta se sli¢cnost moze temeljiti na jednoj relevant-
noj komponenti, poput kretanja [58, 136], ili pak kombinirati viSe razli¢itih faktora, ukljucu-
juci vizualni izgled, dinamiku kretanja i oblik objekta [135, 75, 94, 59, 81]. OpcCenito, mjere
sli¢nosti mogu se podijeliti u tri glavne kategorije: prostorne, vizualne i kombinirane mjere
sli¢nosti [137].

Prostorne i dinamicke mjere slicnosti

Prostorne, odnosno geometrijske, mjere sli¢nosti kvantificiraju slicnost izmedu dva objekta,

koji su najcesce reprezentirani pravokutnim granicnim okvirima, usporedujuci njihov polo-
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Zaj, oblik ili veli¢inu. One najcesce procjenjuju koliko se blizu jedan drugome nalaze dva
objekta u prostoru te u kojoj mjeri im se oblici podudaraju.

Jedna od najcesce koriStenih mjera sli¢nosti je IoU (engl. Intersection over Union) [58,
68, 60, 136, 129, 59, 61, 81], koja ratuna omjer povrsine presjeka dvaju grani¢nih okvira A

1 B u odnosu na povrsinu njihove unije. Matematicki, IoU se definira kao:

_|AnB| |ANB|

_ _ , 2.9
AUB| A+ |B|—JACB| (2:9)

10U (A,B)

gdje | - | oznacava povrSinu. U algoritmima za pracenje vise objekata, IoU se obi¢no racuna
izmedu grani¢nih okvira detekcija iz novog okvira videozapisa i grani¢nih okvira predvide-
nih stanja postojecih putanja [58, 68, 60, 59, 61, 81] ili izmedu grani¢nih okvira detekcija iz
susjednih okvira koje se povezuju u putanje [136, 129]. U radovima [58, 136, 68, 60], IoU

se koristi kao jedina mjera sli¢nosti prilikom povezivanja putanja i detekcija.

Napomena. Umjesto loU vrijednosti direktno, u algoritmima pracenja koristi se i loU uda-
ljenost zadana s: d"°Y(A,B) = 1 —10U(A,B).

U radu [65], kao mjera slicnosti izmedu objekta A i objekta B koristi se euklidska uda-
ljenost njihovih centara Cy = (x1,y1) i Cg = (x2,y2):

da(Ca Cr) = /(1 —x2)2 — (1 —y2)?. (2.10)

Kako bi integrirali informaciju o dinamici kretanju u izracun sli¢nosti, u radovima [67,
59, 114, 66, 62] koriste Mahalanobisovu udaljenost [138] koja uzima u obzir korelaciju

promatranih varijabli i njihove varijance. Mahalanobisova udaljenost definirana je s

P (x,y) = \/(x—y) TS (x—y). @.11)

gdje su x,y € R”, a § matrica kovarijance. Na primjer, u [59], racuna se kvadrat Mahalano-
bisove udaljenosti gdje x predstavlja detekciju iz trenutnog okvira videozapisa, dok suy i §

projekcije stanja i kovarijance putanje, predvidene Kalmanovim filterom, u prostor mjerenja.

Vizualne mjere sli¢nosti

Vizualne mjere slicnosti koriste se za prepoznavanje istog objekta kroz razlifite vremen-
ske okvire na temelju njegovih vizualnih karakteristika. Ove mjere se obi¢no oslanjaju na
visokodimenzionalne vektore znacajki generirane dubokim modelima poput konvolucijskih
neuronskih mreza [139].

Za kvantificiranje vizualne slicnosti najcesce se koristi kosinusna sli¢nost vektora zna-
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Cajki [75, 132, 59, 119, 67, 66], definirana s:

(fp, fr)

cos(fp,f _
A TR

(2.12)

gdje su fp 1 f7 n-dimenzionalni vektori znacajki detekcije D i putanje 7'.

Napomena. Umjesto kosinusne slicnosti, obi¢no se racuna kosinusna udaljenost d°°* (fp, fr)
definirana s d°° (fp,fr) = 1 —cos(f4, fz).

Pored kosinusne sli¢nosti, jos se Cesto koristi i euklidska udaljenost vektora znacajki
[129, 134, 133]:

d(fp,fr) = ||fp —fr|, = \/Z Jpi—fri)* (2.13)

Prednost kosinusne sli¢nosti u odnosu na euklidsku udaljenost je u njenoj neosjetljivosti na
skaliranje podataka 1 u¢inkovitosti u visokodimenzionalnim prostorima. Vektori se smatraju
sli¢cnima ako imaju istu orijentaciju u prostoru, bez obzira na njihovu veli¢inu. S druge
strane, euklidska udaljenost mjeri stvarnu geometrijsku udaljenost izmedu vektora, uzima-

juci u obzir razlike kako u njihovoj velicini, tako i u orijentaciji.

Kombinirane mjere slicnosti

Prostorne i vizualne mjere sli¢nost pruzaju razlicite, ali medusobno komplementarne infor-
macije u procesu pracenja objekata, a njihova kombinacija omogucuje znacajno poboljSanje
tocnosti asocijacije i povecanje robusnosti sustava za pracenje [137, 139].

Najjednostavniji nacin kreiranja kombinirane mjere sli¢nosti temelji se na teZinskoj sumi.
Neka su dane dvije mjere sli¢nosti s1 i 52 zajedno s odgovarajucim teZinama wy, wy € R. Tada

se kombinirana mjera sli¢nosti s jednostavno moze definirati kao [137]:
S = WiS] +wass. (2.14)

Na ovaj nac¢in omogucuje se prilagodba doprinosa prostornih i vizualnih mjera ovisno o

specifi¢nostima zadanog sustava.

2.2.5. Asocijacija

U koraku asocijacije cilj je odrediti kojoj od postojecih pracenih putanja pripada detekcija
iz trenutnog okvira ili, alternativno, predstavlja li ta detekcija novi objekt koji tek treba
poceti pratiti. Problem optimalnog pridruZivanja detekcija postojeim putanjama moZe se
formulirati kao problem pridruzivanja maksimalne tezZine u potpunom tezZinskom bipartitnom
grafu. Ta se formulacija jednostavno moZe prilagoditi i problemu pridruZivanja minimalne
tezine, kada se umjesto slicnosti koriste razliCite mjere udaljenosti kao cijene pridruZivanja

detekcija postojecim putanjama objekata.
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Madarski algoritam

Neka je 7 = {Tj,...,T,} skup postoje¢ih putanja objekata, a D, = {D,...,Dy,} skup de-
tekcija iz trenutnog okvira 7 videozapisa. Nadalje, neka je G = (V, E), gdje je V=T U D,
skup vrhova, a E = T x D; skup bridova, potpuni tezinski bipartitni graf s funkcijom teZine
w:E — R(}L koja svakom bridu (7;, D;) pridruZi cijenu pridruzivanja detekcije D; putanji
T;, odnosno w(T;, Dj) = s(T;, D;), gdje je s odabrana mjera sli¢nosti. Jedan primjer takvog
grafa prikazan je na Slici 2.5.

Pridruzivanje M u grafu G je podskup bridova M C E takav da za svaki vrth v € V vrijedi
da je incidentan najviSe jednom bridu iz M. TeZina pridruzivanja M jednaka je sumi teZina
svih bridova e € M:

w(M) =Y w(e). (2.15)

ecM
Cilj je za dani bipartitni graf G odrediti pridruZivanje M maksimalne teZine. Navedeno,

optimalno pridruZivanje moZe se pronac¢i pomocu madarskog algoritma.

Detekcije
(D)

Postojeée putanje

(7)

Slika 2.5: Ilustracija bipartitnog grafa kakav se koristi prilikom pridruZivanja putanja i
detekcija primjenom madarskog algoritma.

Madarski algoritam [140], takoder poznat i pod nazivom Kuhn-Munkersov algoritam,
problem pridruZivanja rjeSava u polinomijalnom vremenu O(n?) gdje je n = |T| = | D| [141].
Iako datira joS iz 1955. godine, madarski algoritam je najceSCe koriSteni algoritam za aso-
cijaciju detekcija i putanja u algoritmima pracenja [75, 134, 94, 135, 58, 61, 60, 77, 67, 93,
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66, 68, 129]. U slucaju da pretpostavka | 7’| = |D| ne vrijedi, u particiju vrhova manje kar-
dinalnosti moZe se dodati odgovarajuci broj fiktivnih ¢vorova koji se onda povezuju sa svim
vrhovima iz druge particije bridovima teZine 0, odnosno minimalne vrijednosti slicnosti.
Dani bipartitni graf moZe se reprezentirati n x n matricom susjedstva C = [c; ;] kojoj retci
odgovaraju putanjama, a stupci detekcijama pri ¢emu je ¢; j = w(7;, D;). Tada je madarska
metoda dana Algoritmom 1. Ako matrica susjedstva C sadrZi udaljenosti, a ne slinosti, onda

se trazi pridruZivanje minimalne teZine i preskace se prvi korak algoritma.

Algoritam 1 Madarski algoritam

Ulaz: n x n matrica susjedstva C = [c; j]
Izlaz: optimalno pridruZivanje redaka i stupaca matrice

1. Svodenje problema maksimizacije na problem minimizacije:

Vrijednost ¢; ; svake Celije zamijeniti razlikom Cyax — ¢; j gdje je Crax
maksimalna vrijednost dane matrice susjedstva.

2. Redukcija redaka:

Od svake vrijednosti u retku oduzeti minimalnu vrijednost tog retka.
3. Redukcija stupaca:

Od svake vrijednosti u stupcu oduzeti minimalnu vrijednost tog stupca.
4. Minimalna pokrivenost:

Minimalnim brojem vertikalnih i horizontalnih linija precrtati retke i stupce
matrice tako da sve nule budu precrtane.

5. AKo je broj nacrtanih linija jednak n:

6. vrati {(l,]) 1Cij= O}

7. Inace:

8. Pronadi najmanji element matrice koji nije precrtan linijama.

9. Taj element oduzmi od svih elemenata redaka koji nisu precrtani.
10. Taj element dodaj svim elementima stupaca koji su precrtani.
11. Vrati se na liniju 4.

Pridruzivanje detekcija postojeéim putanjama moze se provoditi u jednoj fazi [58, 62,
136] ili u vise njih [59, 60, 61, 27]. DeepSORT [59] koristi kaskadno pridruzivanje kod
kojeg se detekcije ne povezuju sa svim postojeim putanjama odjednom, veé se asocija-
cija provodi u viSe ciklusa, uzimajuci u obzir starost putanja. U prvom ciklusu, detekcije

se pokuSavaju pridruziti najmladim putanjama koje su u prethodnom okviru uspjes$no azu-
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rirane (dob = 1), a zatim se u narednim ciklusima asocijacija proSiruje na starije putanje
(dob =12, ... ,doby,y) 1 preostale neuparene detekcije. U svakom ciklusu pridruzivanja ko-
risti se ista mjera sli¢nosti. Druga popularna varijanta asocijacije je ona u dvije faze [60, 61].
ByteTrack [60] i BoT-SORT [61] upotrebljavaju varijantu pridruZivanja u dvije faze u kojoj
se u prvoj fazi putanjama pridruzuju detekcije visoke pouzdanosti temeljem vizualne slic-
nosti i/ili IoU mjere preklapanja grani¢nih okvira, dok se u drugoj fazi neuparene putanje

pokuSavaju povezati s detekcijama niZe pouzdanosti iskljucivo temeljem IoU sli¢nosti.

Alternativne metode asocijacije

Umjesto madarskog algoritma, u [129, 142, 65] koristi se jednostavni pohlepni algoritam,
koji u svakom koraku pridruZuje parove detekcija i putanja s najveCom vrijednoS€u izracu-
nate sli¢nosti. Zbog svoje efikasnosti, pohlepna metoda asocijacije koristi se i u [143] za
postizanje online pracenja u stvarnom vremenu.

Azizpour i suradnici [144] predstavljaju algoritam asocijacije koji se temelji na problemu
pridruZivanja grafa putanja i grafa detekcija, koristeéi pritom kvadratno programiranje i graf
neuronske mreze (engl. graph neural networks). S druge strane, u [145, 98] primjenjuje
se LSTM mreza za asocijaciju, dok Yoon i suradnici [146] predlaZu neuronsku mreZu koja
se sastoji od enkodera s potpuno povezanim slojevima i dvosmjerne LSTM mreZe u deko-
deru. Navedene metode asocijacije unose znatno racunsko optereéenje, Sto onemogucéava

izvodenje algoritama u stvarnom vremenu.

2.2.6. Upravljanje putanjama

U koraku upravljanja putanjama provode se sljedece operacije: 1) aZuriranje stanja posto-
jecih putanja kojima je uspje$no pridruZena detekcija u koraku asocijacije, 2) inicijalizacija
novih putanja za detekcije koje nisu uspjesno pridruzene postojeéim putanjama, 3) zavrsa-

vanje putanja objekata koji su napustili scenu.

1) AZuriranje stanja putanja
Ovaj proces obuhvaca azuriranje vrijednosti promatranih varijabli putanja na temelju pri-
druZenih detekcija, odnosno novih mjerenja. U praksi, to moZe ukljucivati korektivni
korak Kalmanovog filtera, gdje se stanje putanje aZurira kombinacijom predvidenog sta-
nja i inovacije, koja predstavlja razliku izmedu predvidenih i stvarnih mjerenja. Takoder,
moZe se koristiti prilagodba vizualnih znacajki putanja temeljem vizualnih znacajki no-

vih, pridruZenih detekcija [67].

2) Inicijalizacija novih putanja
NepridruZena detekcija ne rezultira uvijek automatskim stvaranjem nove putanje. Nova
putanja obicno se ne dodaje odmah u skup postojecih i aktivnih putanja, buduci da pos-

toji mogucnost da se radi o laZno pozitivnoj detekciji. UobicCajena praksa je stvaranje
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probnih putanja za nepridruZene detekcije, koje se inicijaliziraju tek nakon $to opstanu
odredeno testno razdoblje [58, 67]. Na primjer, u [67], nova putanja se stvara samo ako
odgovarajuca detekcija prezivi dva uzastopna okvira videozapisa. S druge strane, Zhang
i suradnici [60] odmah inicijaliziraju putanje, ali iskljuivo za nepridruZene detekcije vi-

soke pouzdanosti.

3) Zavrsavanje putanja
Postojece putanje obi¢no se ne prekidaju odmah ako im se u jednom okviru nije uspjelo
pridruziti detekciju, jer to moze biti posljedica privremene zaklonjenosti praenog objekta
ili neuspjesne detekcije. Umjesto toga, putanje se najcesce zavrSavaju nakon odredenog
broja uzastopnih neuspjeSnih poku$aja pridruZivanja detekcija [58, 142, 67, 61, 66, 68].
Na primjer, u [67, 61, 66], putanje se zavrSavaju nakon 30 uzastopnih neuspjeSnih pri-
druzivanja. Nasuprot tome, u radu [143], putanja se zavrSava ako joj u nizu od Nyjgs
uzastopnih okvira nije uspjeSno pridruZena niti jedna detekcija ili ako je broj pridruzenih

detekcija manji od broja nedostajucih detekcija za tu putanju.

Mahmoudi i suradnici [94] kao izlaz prikazuju samo stabilne putanje koje ispunjavaju
sljedece kriterije: 1) najvise Tj,, okvira putanji nije uspjesno pridruZena detekcija, 2) omjer
broja okvira tijekom postojanja putanje u kojima je putanji pridruzZena detekcija i broja okvira
u kojima to nije bio slucaj veéi je od 71,5, 3) prosjecna cijena pridruZivanja detekcije putanji
manja je od T.os. Rad [98] koristi rekurentnu neuronsku mrezu za predvidanje vjerojat-
nosti € postojanja putanje u sljede¢em okviru na temelju prethodno prikupljenih informacija.

Vrijednost € koristi se za odluku o inicijalizaciji ili zavrSavanju putanje objekta.

2.3. Popularni algoritmi temeljeni na detekciji

Algoritmi pracenja temeljeni na detekciji predstavljaju vodeci pristup zadatku pracenja vise
objekata [147, 148]. Najpoznatiji predstavnik ove kategorije algoritama je SORT [58], brz i
efikasan algoritam pracenja koji je pogodan za izvrSavanje aplikacija u stvarnom vremenu.
SORT je postavio temelje za razvoj mnogih popularnih algoritama koji dodatno unapreduju
osnovni koncept SORT-a prilagodavajuci ga razli¢itim izazovima pracenja viSe objekata.

SORT (Simple Online and Realtime Tracking) [58] koristi Kalmanov filter za predvi-
danje sljedeceg stanja pracenih objekata, nakon cega se nove detekcije pokusSavaju pridru-
Ziti odgovaraju¢im putanjama koriste¢i madarski algoritam i IoU predvidenih i detektiranih
grani¢nih okvira kao mjeru slicnosti. Kako bi se oCuvala efikasnost algoritma, putanje se
zavrSavaju ¢im im u jednom koraku nije pridruZena detekcija. Ako se objekt, Cija je putanja
zavrsena, ponovo pojavi, pracenje se nastavlja s novim identitetom, $to rezultira fragmenta-
cijom putanja i gubitkom kontinuiteta pracenja.

Wojke i suradnici [59] predlazu DeepSORT algoritam, koji u SORT integrira vizualnu

informaciju kodiranu 128-dimenzionalnim vektorom znacajki dobivenih dubokom neuron-
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skom mreZzom. DeepSORT koristi kaskadno pridruZivanje u kojem se detekcije putanjama
pridruZuju po starosti. Prilikom pridruZivanja koristi se metrika koja kombinira informaciju
o dinamici kretanju objekta i vizualnu informaciju: d = Ad** + (1 —A)a""P, gdje aMhP
predstavlja kvadrat Mahalanobisove udaljenosti predvidenog Kalmanovog stanja putanje i
detekcije, a d°° minimalnu kosinusnu udaljenost vizualnih znacajki nove detekcije i zna-
Cajki zadnjih 100 detekcija koje su pridruzene danoj putanji. Koriste¢i unaprijed definirane
grani¢ne vrijednosti Oy,p 1 0,is za dM"P i @S, filtriraju se neprihvatljiva pridruZivanja. U
eksperimentima iz [59], koristenje A = 1 implicira da se informacija o kretanju ™" koristi
iskljucivo za filtriranje neprihvatljivih pridruZivanja. Nakon kaskadnog pridruZivanja, ne-
pridruZene detekcije i putanje se pokuSavaju povezati koriste¢i IoU udaljenost. Za razliku
od SORT-a, putanje se ne zavrSavaju odmah, ve¢ nakon $to im tijekom 30 uzastopnih okvira
nije pridruZena detekcija.

U [60], autori predlaZzu novu metodu asocijacije koja u obzir uzima gotovo sve detek-
tirane grani¢ne okvire, ¢ak i one s malom pouzdanoscu, i implementiraju je u ByteTrack
algoritam. Grani¢ni okviri s malom pouzdano$¢u mogu indicirati postojanje objekata koji su
djelomi¢no zaklonjeni, pa njihovo filtriranje moze dovesti do fragmentacije putanja prac¢enih
objekata. PredloZena metoda asocijacije, koja se temelji na madarskom algoritmu, odvija se
u dvije faze. U prvoj fazi putanjama se pokuSavaju pridruZiti detekcije visoke pouzdanosti
koriste¢i ili IoU ili udaljenost vektora vizualnih znacajki detekcija i predvidanja Kalmanovog
filtera. U drugoj fazi se neuparenim putanjama pridruZzuju detekcije koje imaju nizu pouz-
danost koristeéi iskljucivo IoU kao mjeru sli¢nosti, buduéi da takvi grani¢ni okviri obi¢no
sadrze zaklonjene objekte.

BoT-SORT algoritam [61] integrira sljede¢e modifikacije u ByteTrack: (1) dodatno se
upotrebljava kompenzacija pokreta kamere, (2) koristi se poboljSana verzija Kalmanovog
filtera koja u vektoru stanja koristi direktno visinu i Sirinu granicnog okvira, umjesto visine
i omjera Sirine 1 visine grani¢nog okvira, (3) u prvoj fazi asocijacije, u kojoj se putanjama
pridruzuju detekcije visoke pouzdanosti, koristi se mjera udaljenosti koja povezuje vizualne
znacajke i znacajke kretanja. Cijena C(7;,D;) pridruZivanja detekcije D; putanji 7; u prvoj
loU dAicos

fazi asocijacije dana je s C(T;,D;) = min{d;”, d{

denog grani¢nog okvira za putanju 7; i detektiranog grani¢nog okvira D, a df?s predloZena

}, gdje je dl-ljU IoU udaljenost predvi-
mjera vizualne udaljenosti definirana s:

_ loU
oo [0sams am <owny <ou) 216
1, inace

pri Cemu je df"}s kosinusna udaljenost vektora znacajki detekcije D; i eksponencijalnog po-
mic¢nog prosjeka vektora znacajki detekcija pridruzenih putanji 7;, a 0,y = 0.5160,;;, = 0.25

grani¢ne vrijednosti kojima se odbacuju slabo vjerojatna pridruZivanja.
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StrongSORT [62] unaprjeduje DeepSORT na razli¢ite nacine: (1) koristi ECC [149] mo-
del za kompenzaciju pokreta kamere, (2) implementira NSA Kalmanov filter [104] umjesto
obi¢nog Kalmana, (3) za ekstrakciju vizualnih znacajki koristi BoT ekstraktor [150] s Res-
NeSt50 [151] okosnicom, (4) za opis vizualnog izgleda putanje koristi eksponencijalni po-
micni prosjek vizualnih znacajki pridruZenih detekcija, (5) kao mjeru udaljenosti koristi li-
nearnu kombinaciju d = Ad® 4 (1 —A)d™"P, pri Eemu je A = 0.98, te se vrijednost aM"P ne
koristi samo za filtriranje neprihvatljivih pridruZivanja ve¢ se i direktno integrira u konacnu
udaljenost, (6) za asocijaciju Koristi jednostavno pridruZivanje, umjesto kaskadnog pridruZi-
vanja. Dodatno, predloZena su dva jednostavna i u€inkovita algoritma za post-procesiranje:
AFLink metoda za globalnu asocijaciju putanja koja koristi isklju¢ivo prostorno-vremenske
informacije 1 GSI algoritam za interpolaciju putanja baziran na Gaussovoj regresiji procesa,
koji se koristi za ublaZzavanje nepravilnosti nastalih zbog nedostaju¢ih detekcija. Strong-
SORT++ predstavlja nadogradnju StrongSORT algoritma u kojoj su implementirani nave-
deni post-procesni koraci.

OC-SORT (Observation-Centric SORT) [27] generalizirana je verzija klasicnog SORT
algoritma koja povecava robusnost praéenja u situacijama okluzije objekata i njihovog neli-
nearnog kretanja. Ova metoda uvodi tri klju¢na modula koja nadograduju standardni Kal-
manov filter i metodu asocijacije putanja i detekcija. Prvi od njih je modul dodatne ko-
rekcije temeljene na opaZanjima (engl. Observation-Centric Re-Update, ORU) koji Koristi
virtualnu putanju Z; = z;, + %(zt2 —12;), 11 <t <y, dobivenu linearnom interpolacijom
posljednje poznate detekcije z;, izgubljenog objekta i nove detekcije z;, s kojom je objekt po-
vezan nakon okluzije, kako bi se retroaktivno izvr$ili korektivni koraci Kalmanovog filtera
u vremenskim trenutcima u kojima su stvarna mjerenja izostala, ¢ime se smanjuje akumuli-
rana pogreSka predvidanja i poboljSava preciznost prac¢enja nakon zavrSetka okluzije. Druga
nadogradnja odnosi se na moment temeljen na opazanjima (engl. Observation-Centric Mo-
mentum, OCM): dodatni kriterij zasnovan na konzistentnosti smjera kretanja A0 koji se uvodi
u cijenu pridruZivanja, d = —IoU + A®, §to je narocCito korisno kod nelinearnog kretanja
objekata. Posljednje poboljSanje obuhvaca pokusSaj ponovne asocijacije neuparenih puta-
nja temeljem njihovih posljednjih opaZanja (engl. Observation-Centric Recovery, OCR),
Sto pomaze u oporavku putanja objekata koji su kratkotrajno zaklonjeni ili izgubljeni, pri
tom se kao cijena pridruZivanja koristi samo —/oU.

Maggiolino 1 sur. [152] uvode adaptivnu integraciju vizualnih znacajki u OC-SORT algo-
ritam, koji se temelji isklju¢ivo na informacijama o kretanju objekata. Predlozeni Deep OC-
SORT algoritam za aZuriranje vizualnih znacajki putanje koristi eksponencijalni pomic¢ni
prosjek s dinamickim faktorom teZine o; koji ovisi o pouzdanosti detekcija. Nadalje, kao
mjera slicnosti u fazi asocijacije koristi se kombinacija IoU i kosinusne udaljenosti vizualnih
vektora znacajki, pri Cemu se teZina vizualnog dijela prilagodava ovisno o diskriminativnosti
izgleda objekta. Naime, ako je neka putanja ili detekcija jasno povezana samo s jednim kan-

didatom, tj. velika je razlika izmedu najbolje i druge najbolje vrijednosti sli¢nosti, onda se
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teZina vizualnog dijela za taj par povecava.

BoostTrack [63] algoritam koristi metodu asocijacije u jednoj fazi u kojoj se sve de-
tekcije (ukljucujuéi i one s niskom pouzdanoscu) koriste zajedno u jednom koraku. Mjera
sli¢nosti koja se pri tom koristi dobije se zbrajanjem osnovne IoU sli¢nosti sp,g. 1 ponde-
riranih dodataka koji se koriste za "boostanje" sli¢nosti, a oni ukljucuju: 1) IoU udalje-
nost skaliranu umnoskom pouzdanosti detekcije i pouzdanosti putanje, pri ¢emu pouzda-
nost putanje ovisi o njenoj starosti i vremenu od posljednjeg aZuriranja, kojom se implicitno
favoriziraju parovi visoke pouzdanosti bez uvodenja dodatne faze asocijacije, 2) softmax-
normalizirane vrijednosti Mahalanobisove udaljenosti sMhd 3) sli¢nosti oblika, visine i Si-

rine, grani¢nih okvira s"ere,

Dodatkom vizualnih zancajki u boostanu slicnost osnovne
verziju BoostTrack algoritma performanse algoritma dodatno se povecaju performanse i
stabilnost pracenja. Konacna mjera slicnosti koja se koristi u asocijaciji tada je dana s
Sboost = Sbase T+ }\’IOU ~cp-cr -ToU + thD : sMhD + ?\fshape : Sshape + A'app - s9PP, gdje Su Cp i
cr pouzdanosti detekcije i putanje redom, a Ajor, Ay, Ashape, Mapp hiperparametri koji se

koriste za ponderiranje pojedinih komponenti.

2.4. Evaluacija MOT algoritama

Za efikasnu 1 objektivnu evaluaciju MOT algoritama potrebne su nam kvantitativne metrike
koje mjere sposobnost algoritama da u svakom okviru videozapisa pronadu 1 precizno loka-
liziraju sve objekte od interesa te konzistentno prate njihove putanje i jedinstvene identifika-
tore kroz vrijeme [153].

2.4.1. Metrike

Neka je O = {01, ...,0,} skup stvarnih putanja objekata, a H = {hj,...,h,} skup hipoteza,
odnosno predvidenih putanja MOT algoritma. Stvarne putanje objekata i hipoteze repre-
zentirane su skupom detekcija Oy, 1 Hge; u svakom okviru videozapisa. Svakoj detekciji

pridruZen je jedinstveni identifikator za pojedini okvir, koji je konzistentan kroz vrijeme za

(1)

sve detekcije iz iste putanje. Detekciju objekta o; ili hipoteze 4 ; u okviru f oznacavamo s o,

(1)

odnosno & i pri cemu indeksi i i j predstavljaju odgovarajuce identifikatore detekcije.

Napomena. Pri pracenju objekata razlicitih klasa, svakoj putanji se dodatno pridjeljuje i
oznaka klase. Kako se u viseklasnom scenariju kod vecine evaluacijskih metrika konacna
vrijednost dobivena izracunom srednje vrijednosti po pojedinim klasama [154], u nastavku

se zbog jednostavnosti pretpostavlja da se prate objekti samo jedne klase.

Pogreske algoritama za pracenje mogu se klasificirati u tri kategorije: 1) pogreske lo-
kalizacije koje nastaju kada predvidene detekcije nedovoljno precizno odreduju poloZaje

stvarnih objekata, 2) pogreske detekcije koje se javljaju kada algoritam predvida detekcije
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koje u stvarnosti ne postoje ili propusta detektirati stvarne objekte, 3) pogreske asocijacije
koje su rezultat pogreSnog povezivanja detekcija izmedu okvira videozapisa, bilo da algori-
tam isti identifikator dodjeljuje razli¢itim stvarnim putanjama ili viSe razlicitih identifikatora

jednoj stvarnoj putanji.

MOTA, MOTP

Bernardin i suradnici u [153] predstavljaju dvije CLEAR MOT metrike: MOTA (engl.
Multi-Object Tracking Accuracy) metriku koja mjeri koliko dobro algoritam detektira
objekte i predvida putanje i MOTP (engl. Multi-Object Tracking Precision) metriku koja
mjeri preciznost lokalizacije praenih objekata. UnatoC svojim nedostacima, MOTA se ubrzo
afirmirala kao primarna metrika za evaluaciju MOT algoritama [154, 43]. Kako bi se mo-
gle izraCunati vrijednosti MOTA i MOTP metrika, u svakom okviru videozapisa potrebno
je pridruziti stvarne detekcije objekata detekcijama hipoteza. Navedeno se radi na sljedeéi
nacin:

l(l) i pl" manja od unaprijed definirane grani¢ne

(

J
vrijednosti o, onda pridruZivanje detekcija 01@ , hy) !

(1) Ako je sli¢nost s izmedu detekcija o

) nije valjano.
() 1)
il
) > O, ostaju ocuvana i u okviru 7 + 1.

(2) Sva pridruzivanja detekcija (o ) iz okvira 7 koja su valjana u okviru z + 1, odnosno

za koja vrijedi s <0§t+1) , hyﬂ)
(3) Detekcije koje su ostale neuparene nakon (2), pokuSavaju se pridruZziti jedne drugima na
nadin da se maksimizira njihova ukupna sli¢nost.> Navedeno se moZe napraviti pomocu

madarskog algoritma.

Neka je TP C O, X Hye; skup svih pridruZzenih parova detekcija stvarnih objekata i
hipoteza, FP C Hy,; skup lazno pozitivnih (preostalih, neuparenih) detekcija hipoteza te
FN C Oy skup lazno negativnih (preostalih, neuparenih) detekcija stvarnih objekata. Na-
dalje, neka IDSW oznacava broj zamjena identiteta (engl. IDentity SWitch) tj. koliko je
puta detekciji stvarnog objekta pridruZena detekcija hipoteze Ciji identifikator nije konzis-
tentan identifikatoru hipoteze koja je tom istom objektu pridruZzena u prethodnim okvirima.

Tada je

FN FP|+I1IDSW 1
‘ |+ |FP|+ MOTP = —— Z s(o,h). 2.17)

MOTA =1— ,
|Oder| | TP| (0,h)ETP

Prethodno definirani skupovi koriSteni u izracunu CLEAR MOT metrika vizualizirani su na
Slici 2.6.

''U slu¢aju 2D praéenja kao mijera sliénosti s najéesce se koristi JoU odgovarajuéih grani¢nih okvira [44].
2Sva pridruZivanja moraju biti valjana.
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t t+1 t42 t43 t+4 t+5H t4+6 t+7 t4+8 t4+9
] FN: lazno negativna B FP: laZno Fe TP par
detekcija pozitivna detekcija L pridruzenih detekcija

Slika 2.6: Vizualizacija CLEAR MOT koncepata. Na slici je prikazano deset uzastopnih
okvira pracenja. 01, 03 i 03 su stvarne putanje objekata, a hy, ..., hs hipoteze algoritma.

HOTA

Budu¢i da MOTA ne mjeri pogresku lokalizacije te prenaglaSava vaznost detekcije naustrb
asocijacije, u [154] je predloZzena nova HOTA (engl. Higher Order Tracking Accuracy)
metrika koja na uravnoteZen nacin kombinira sve aspekte evaluacije algoritama za praéenje.

U definicijama skupova (2.18), (2.19) i (2.20) koje slijede, zbog preglednosti se izostavlja
' €{1,...,N} gdje je N broj okvira danog videozapisa. Nadalje, ako je z skup, {x € z | ¥}
oznacava skup {x | x € zAy}.

Za dani par pridruZenih detekcija (ol@ , hg-t)) € TP skupovi to¢nih (7T'PA), lazno negativnih
(FNA) i lazno pozitivnih (FPA) asocijacija® definiraju se na sljedeéi nadin:

TPA ((ol(f),hg.’))) - {<o§”>,h§.")) e TP}, (2.18)
FNA ((oi’),hﬁf))) - { <0§zl),h,(:/)> ETP|k# j} U {oﬁt') e FN} , (2.19)
FPA ((o§’),h§.’))> - { <o,(f/),h§~tl)) ETP|k+ i} U {hﬁ” e FP} . (2.20)

Definirani skupovi vizualno su pojaSnjeni na Slici 2.7. Tada je HOTAq metrika za zadanu

3TPA (engl. True Positive Associations), FNA (engl. False Negative Associations), FPA (engl. False
Positive Associations).
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grani¢nu (lokalizacijsku) vrijednost o dana s

Y A(c)
ceTP (©) |TPA(c)|

HOTAy = y C) = 5
¢ |TP|+|FN|+ |FP| |TPA(c)| +|FNA(c)| + |FPA(c)|

(2.21)

pri ¢emu TP, FN 1 FP mjere uspjeh, odnosno pogresku detekcije, a TPA, FNA 1 FPA aso-
cijacije. Kako bi se dodatno uzeo i aspekt lokalizacije, HOTA se definira kao vrijednost
integrala po valjanim grani¢nim vrijednostima o, a u praksi se aproksimira aritmeti¢kom
sredinom vrijednosti HOTAy metrike za o € {0.05,0.1,...,0.95}:

1 0.95
HOTA:/ HOTA do~ — Z HOTA,. (2.22)
0 19

a=0.05
a+=0.05

9 ® hy  Predvidene detekcije D Odabtirami
Y & i putanje e = (OEH-E].‘ hti\f+2‘.l] TP

@ @ o stvarne detekcije

i putanje TPA(c) FPAlc) | _i FNA(c)

Slika 2.7: HOTA: Ilustracija TPA, FPA i FNA skupova za odabrano ispravno pridruZivanje
c € TP predvidene detekcije hipoteze h| detekciji stvarne putanje o1 iz trenutka t + 2. Skup
ispravnih pridruZivanja T PA(c) predvidenih detekcija hipoteze hy (manji crni kruZici)
detekcijama odgovarajuce stvarne putanje (veci tamno plavi krugovi) oznacen je zelenom
bojom. Skup FPA(c), oznacen Zutom bojom, sadrZi predvidene detekcije hipoteze hy koje
nisu pridruZene niti jednoj stvarnoj putanji ili su pridruzene pogresnoj putanji. Smedom
bojom oznacen skup FNA(c) obuhvaca detekcije stvarne putanje o1 kojima je pridruZena
detekcija pogresne hipoteze ili im uopce nije pridruZena predvidena detekcija. (Slika
preuzeta iz [154], uz izmjene.)
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IDF1

Za evaluaciju algoritama za pradenje uglavnom se istovremeno koristi viSe razliitih me-
trika. Uz MOTA i HOTA metrike, Cesto se koristi i IDF'1 [155] metrika koja se fokusira na
tocnost identifikacije objekata tokom prac¢enja. Dok MOTA i HOTA rade pridruzivanja na

razini detekcija, IDF1 to €ini na razini putanja. Definiraju se novi skupovi: IDTP (engl.
(1) 5
i 0

dijelovima putanja koje su pridruzene, IDFN (engl. Identity False Negatives) i IDF P (engl.

Identity True Positives) kao skup parova pridruZenih detekcija (o ) na preklapajuéim
Identity True Positives) kao skupovi preostalih stvarnih detekcije iz Oy, te preostalih pre-
dvidenih detekcija iz H;,; koje se nalaze na putanjama koje nisu uspjeSno pridruzene ili na

nepreklapajuéim dijelovima pridruzenih putanja. Tada je,

]IDTP| o |IDTP\
ID-Precision =

ID-Recall = , )
\IDTP| + |IDFN| \IDTP| + |IDFP|

(2.23)

|IDTP|

IDF1 = .
\IDTP|+0.5|/IDFN|+0.5|/IDFP|

(2.24)

ID-Recall je udio stvarnih detekcija koje su ispravno identificirane, a ID-Precision udio
detekcija hipoteza koje su ispravno identificirane. /DF 1 kombinira ID-Recall i ID-Precision
u jedan broj racunajuci njihovu harmonijsku sredinu [155]. IDF1 metrika dolazi s nekim
nedostacima ukljucujuci prenaglaSavanje asocijacija, neintuitivno i nemonotono ponasanje
u slucaju detekcija, izostanak evaluacije pogreske lokalizacije te ne razmatranje tocnosti

asocijacije van preklapajucih dijelova pridruZenih putanja [154].

Klasi¢ne metrike

Prethodno navedene metrike Cesto se komplementiraju i rezultatima klasi¢nih metrika [142]
poput broja putanja stvarnih objekata koji je tocno pracen u barem 80% okvira videozapisa
(MT - Mostly Tracked), broja putanja stvarnih objekata koji je to¢no pra¢en u manje od
20% okvira (ML - Mostly Lost), broja fragmenata (Frag), odnosno hipoteza koje pokrivaju

manje od 80% stvarne putanje objekta.

2.5. Klju¢ni izazovi algoritama za pracenje viSe objekata

Algoritmi za pradenje viSe objekata suoCavaju se s nizom izazova koji zna¢ajno mogu utje-
cati na njihovu uc€inkovitost i performanse. Ti izazovi uglavnom su povezani sa sloZenos$éu
zadatka detekcije objekata, problemom precizne asocijacije i odrZavanja konzistentnih iden-
titeta pracenih objekata, osobito u dinamic¢nim i sloZenim okruZenjima, gdje su Cesta prekla-

panja, kolizije i interakcije medu objektima.
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Buduci da se algoritmi za pracenje u velikoj mjeri oslanjaju na ulazne detekcije, njihove
performanse mogu znacajno biti naruSene pogreSkama detektora, poput izostanka detekcije
objekta, lazno pozitivnih detekcija i nejasnih detekcija preklapajucih objekata [156, 62].
Poseban izazov predstavlja detekcija malih objekata koji na slici zauzimaju malu povrSinu,
bilo da su fizicki veliki, ali se nalaze na velikim udaljenostima od kamere, ili su zapravo mali
[157, 158], kao i detekcija objekata zaklonjenih drugim objektima ili pozadinom. Slika 2.8
prikazuje nekoliko takvih primjera. Nadalje, velika varijabilnost i nepredvidivost stvarnih
okruZenja, zajedno s promjenama kuta gledanja, osvjetljenja i pozadinskih uvjeta, dodatno

oteZava zadatak detekcije i pracenja objekata [159].

(a) (b)

Slika 2.8: Primjeri malih objekata (a) i zaklonjenih objekata (b) koje je potrebno detektirati
i pratiti.

Problem okluzije objekata predstavlja jedan od najvecih izazova u sustavima za prace-
nje. Ve¢ djelomicna zaklonjenost uspjesno detektiranog objekta oteZava njegovo ispravno
povezivanje s odgovarajuéom putanjom tijekom koraka asocijacije, buduéi da je kvaliteta
dobivenih vektora znacajki upitna [22]. U slucaju potpune zaklonjenosti objekta, vizualna
informacija u potpunosti nedostaje, te se pracenje zaklonjenog objekta provodi iskljucivo
na temelju predvidanja algoritma poput Kalmanovog filtera. Sto je period okluzije dulji, to
je procjena algoritma za predvidanje sljedeCeg stanja manje pouzdana, te se Cesto dogada
da objekt nije ispravno povezan s izvornom putanjom nakon zavrSetka okluzije. Vizualne
znacCajke objekta, koje obi¢no imaju klju¢nu ulogu u reidentifikaciji [59], mogu se znatno
razlikovati u trenucima pred potpunu okluziju i nakon nje, kao $to je ilustrirano na Slici 2.9.
Navedeno oteZava ispravnu reidentifikaciju objekta te rezultira povecanim brojem zamjena
identiteta tijekom pracenja [160].

Osim zbog okluzija, pogreske u asocijaciji i zamjene identiteta mogu biti uzrokovane:
sli¢nim izgledom razlic¢itih objekata (Slika 2.10, b) §to oteZava razlikovanje njihovih vizual-
nih znacajki [161, 162], znacajnim varijacijama u izgledu istog objekta [81] (Slika 2.10, a),
te ne-linearnim i nepredvidivim kretanjima objekata [162, 81]. Pored navedenoga, veéina
prakti¢nih primjena zahtijeva pracenje objekata u stvarnom vremenu, S$to implicira potrebu

za brzim algoritmima. S druge strane, ogranicenja hardverskim resursima mogu znacajno
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Slika 2.9: Plovilo netom prije potpune okluzije (a) i prilikom izlaska iz nje (b).

ograniciti kompleksnost i u¢inkovitost algoritama pracenja.

isto plovilo

(a) (b)

Slika 2.10: Varijacije u izgledu istog objekta (a) i slican izgled razlicitih objekata (b).
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3. PREGLED DOSADASNJIH ISTRAZIVANJA

Ovo poglavlje pruza sustavan pregled dosadasnjih istraZivanja u podrucju automatske detek-
cije i pracenja plovila s posebnim osvrtom na problem okluzije praéenih objekata. U prvom
dijelu (3.1) dan je pregled trenutno dostupnih skupova podataka koji se mogu koristiti prili-
kom treniranja i evaluacije modela za detekciju 1 praenje plovila. Drugi dio (3.2) usmjeren
je na radove koji se bave implementacijom konkretnih algoritama za detekciju i pracenje
plovila. U treem dijelu (3.3) razmatraju se istraZivanja vezana za problem okluzije. Cetvrti
1 posljednji dio (3.4) posvecen je analizi dosadaSnjih istraZivanja te identifikaciji otvorenih
izazova u podrucju automatske detekcije i praenja plovila. U ovom dijelu razmatraju se
klju¢na ogranicenja postojecih pristupa te se ukazuje na smjerove u kojima je potrebno us-

mjeriti bududi istrazivacki rad.

3.1. Dostupni skupovi podataka

Za razvoj uspjesnih i pouzdanih algoritama za detekciju i praenje plovila nuZni su visokok-
valitetni, oznaceni skupovi podataka koji obuhvacaju svu raznolikost pomorskih okruZenja.
Takvi podaci trebali bi ukljucivati razli¢ite tipove plovila, razliite vremenske uvjete i uvjete
na moru, razliite razine osvjetljenja, kao i razli¢ite kutove snimanja. Visokokvalitetni refe-
rentni skupovi podataka ne samo da omogucuju objektivnu usporedbu performansi razlicitih

metoda detekcije i pracenja, ve¢ poticu i daljnji napredak ovoga istraZzivackog podrucja.

3.1.1. Opceniti skupovi podataka

Neki opéenito poznati, javno dostupni skupovi podataka, poput CIFAR10 [163], Caltech-
256 [164] i ImageNet [125] skupova podataka za klasifikaciju, te PASCAL VOC [165] i MS
COCO [166] skupova podataka za detekciju objekata, sadrZe primjere plovila. No, kategorije
plovila koje se javljaju u tim skupovima podataka ne obuhvacaju svu njihovu raznolikost.
Nadalje, plovila u tim skupovima podataka obi¢no zauzimaju veci dio slike te se Cesto nalaze
u njenom samom srediStu. Za u€enje modela temeljenih na dubokom ucenju, uz kvalitetu
samih primjera, bitna je i njihova kvantiteta. Navedeni skupovi podataka sadrze ograni¢en
broj primjera plovila. Nesto veéi broj instanci plovila javlja se u MS COCO skupu podataka,

ali oni pripadaju opcoj klasi ,,boat“, bez daljnje klasifikacije na potkategorije. U Tablici
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3.1 prikazan je broj klasa plovila, slika koje odgovaraju plovilima i odgovarajucih instanci

objekata navedenih skupova podataka.

Tablica 3.1: Opci skupovi podataka koji sadrZe primjere plovila.

Skup podataka Klase plovila Slike Objekti Zadatak
CIFARI10 [163] 1 6000 - klasifikacija
Caltech-256 [164] 4 418 - klasifikacija
ImageNet [125] 6 525 613 klasifikacija/detekcija
PASCAL VOC [165] 1 363 791 detekcija
MS COCO [166] 1 3025 10759 detekcija

Standardni referentni skupovi podataka za evaluaciju 1 usporedbu algoritama pracenja
uglavnom su usredotoceni na pracenje pjeSaka. Primjerice, PETS2009 [29] skup podataka i
skupovi iz MOT izazova [30, 31, 32, 33]. Afirmirali su se i neki skupovi podataka fokusirani
na autonomnu voznju [39, 34, 36, 38] koji dodatno obuhvacaju i vozila na cestama. Medutim,

opceprihvacen skup podataka specificno usmjeren na pracenje plovila jos uvijek nedostaje.

3.1.2. Skupovi podataka iz pomorskih okruZenja

Posljednjih godina predstavljeno je nekoliko skupova podataka iz pomorskih okruzenja koji
sadrze oznacene slike i/ili videozapise snimljene RGB kamerama i usmjereni su na zadatke
klasifikacije, detekcije i pracenja plovila. Kronoloski pregled takvih skupova podataka dan je
u Tablici 3.2, dok su u Tablici 3.3 navedene klase objekata koje se javljaju u tim skupovima.
U Tablici 3.2, simbol """ na kraju retka oznacava da je skup podataka javno dostupan, dok
"x" ukazuje na to da skup podataka nije dostupan javnosti.

VAIS [167], MARVEL [169] i1 Game of Deep Learning: Ship Dataset [171] skupovi po-
dataka fokus stavljaju na klasifikaciju razli¢itih vrsta plovila. VAIS [167] obuhvaca uparene
RGB i infracrvene slike brodova prikupljene tijekom devet dana na Sest razli¢itih gatova.
Ukupno je 2865 slika (1623 RGB i 1242 infracrvenih), od kojih je 1088 parova. MARitime
VEsseLs (MARVEL) [169] skup podataka sadrzi 2 milijuna slika 109 razli¢itih tipova plo-
vila, prikupljenih sa Shipspotting' web stranice. Kori§tenjem polu-nadzirane metode grupi-
ranja, konstruirano je 26 superklasa plovila. Game od Deep Learning: Ship Dataset [171]
je javno dostupan skup podataka predstavljen u sklopu Game of Deep Learning: Computer
Vision Hackathon-a odrzanog 2019. godine. Skup podataka sadrzi 6252 oznacene slike za
treniranje 1 2680 neoznacenih slika za konacnu evaluaciju iz skupa za testiranje.

Iako sadrzi iskljucivo slike iz pomorskih okruZenja, Harbor Surveillance [3] skup po-
dataka za detekciju ne radi distinkciju izmedu razlicitih kategorija plovila. Navedeni skup
podataka sadrzi 48966 slika dobivenih iz videozapisa snimljenih tijekom Sestomjesecnog

razdoblja s deset razliCitih pogleda na luku. Za svaki od pogleda, odabrano je 1 oznaceno

"https://www.shipspotting.com/
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Tablica 3.2: Pregled skupova podataka iz pomorskih okruZenja.

Skup podataka  Godina Slike Objekti Klase Rezolucija Zadaci
VAIS [167] 2015. 1623 - 6 5056x5056 Klasifikacija
SMD [168] 2017. 20367 157668 10 1920x 1080  pradenje
2M 109 razne . ..
MARVEL [169] 2017. (140000) - 26) rezoluciie klasifikacija
SeaShips [170]  2018. 31455 40077 6  1920x 1080  detekcija v/
Harbor 2018. 48966 70513 1 2048x 1536  detekcija  x
Surveillance [3]
Game of DL: razne . ..
ship dataset [171] 2019. 8932 B > rezolucije Klasifikacija
McShips [172]  2020. 14709 26259 13 razne detekcija v/
rezolucije
ABOships [1] 2021. 9880 41967 11  1920x720  detekcija
GLSD [173] 2021. 152576 212357 13 razne. detekcija
rezolucije
LMD-TShip [174]  2021. 40240  N/A 5 razne. pradenje
rezolucije
1280 x 720 detekcija
MarSyn [175] 2022. 25000 34000 6 550%550  sogmentasiia
7680 x 1408,
SeaSAw [4] 2002, 19M  146M 12 S240%2056,  detekeija,

3648 x 2052, pracenje
1920 x 1080

SPSCD [176] 2023. 19337 27849 12 1920 x 1080 detekcija v

FVessel [177] 2023. 7625+ N/A 1 N/A detekeija,
praéenje
MVDDI3[178]  2024. 35474 40839 13 N/A detekcija

viSe slika brodova, osiguravajuci raznolikost pozadina i orijentacija. ABOships [1] skup po-
dataka obuhvaca 9880 slika koje prikazuju cak 41967 oznaCenih objekata. Slike su dobivene
1z videozapisa snimljenih kamerom na plovilu za razgledavanje znamenitosti na ruti od grada
Turku do grada Rusissalo u Finskoj tijekom 13 dana u lipnju i srpnju 2018. godine. Ovaj
skup podataka obuhvaca razliite vremenske uvjete tijekom dana, te ukljucuje slike otvore-
nog mora, luka i urbanih krajolika. U [175], autori u Blenderu generiraju sinteticki MarSyn
skup podataka koji obuhvaca 25 razli¢itih foto-realisti¢nih videozapisa, pri ¢emu se svaki
sastoji od 1000 okvira. Cilj ovog skupa podataka je simulirati raznolike pomorske scenarije i
uvjete, ukljuCujuci varijacije vremenskih uvjeta, slike u blizini obale te refleksije na povrsini
vode. Plovila na slikama su razlicitih vrsta (teretni brodovi, vojni brodovi, ribarski ¢amci,

gliseri, splavi za spasavanje i dr.), duljina (od 3 m do 125 m), oblika i boja.
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Tablica 3.3: Klase plovila koje se javljaju u pojedinim skupovima podataka.

Skup podataka  Broj klasa Klase
merchant, sailing, medium passenger,
VAIS [167] 6 medium other: fugboat. small boat
ferry, buoy, vessel/ship, speed boat, boat, kayak,
SMD [168] 10 sailr?(/)at, s\)wimming pe?sor?, flying bird/plane.yolher
container ship, bulk carrier, passengers ship,
ro-ro/passenger ship, ro-ro carﬁo, tug, vehicles carrier,
26 reefer, yacht, sailing vessef, heavy load carrier,
MARVEL [169] wood chips carrier, fire fighting vessel, patrol vessel,
superklasa platform, standby safety vassel, combat vessel, training
ship, icebreaker; replenishment vessel, tankers, fishing
vessels, supply vessels, carrier/floating, dredgers
: ore carrier, bulk cargo carrier, general cargo ship,
SeasShips [170] 6 container ship, fishing boat,gpassengergship P
Harbor | i
. vesse
Surveillance [3]
Game of DL: 5 ) ) litarv. tank
. cargo, carrier, cruise, military, tankers
ship dataset [171] & Y
. aircraft carrier, submarine, landing ship, auxiliary ship,
McShips [172] 13 destroyer, missile boat, speedboat, fishing boat, passenger
ship, container ship, tugboat, sailboat, support ship
. boat, cargoship, cruiseship, ferry, militaryship, miscboat,
ABOships [1] 11 miscellangous,Il)notorboat,%asseggershipl:}lsail oat, seamark
sailing boat, ﬁshing boat, Warshi{), passenger ship, general
GLSD [173] 13 cargo ship, confainer ship, bulk cargo carrier, barge,
ore carrier, speed boat, canoe, o1l carrier, tug
. cargo ships, fishing ships, passenger ships,
LMD-TShip [174] S g sp%ed boats% unr%an%ed sh%ps P
cargo ships, military ships, fishing boats, speed boats,
MarSyn [175] 6 g P rgscueprafts, other P
ship, recreational vessel, manual craft, sailing vessel,
SeaSAw [4] 12 work boat, fishing vessel, towing vessel, dredge,
wind lLll'blnC, lﬂLll'kCl', mooring bl,l()y, miscellaneous
srga}lll, craft, srlnalllﬁshing boat, smalilll pass.i:.ngelr) ship,
shing trawler, large passenger ship, sailing boat,
SPSCD [176] 12 sgpced craft, r;glotgrboatfgple_as&e yacht,
medium ferry, large ferry, high spéed craft
FVessel [177] 1 vessel
MVDDI13 [178] 13 cargo, passenger, cruise, bulker, tanker, sailingboat, tug,

fishing, drill, firefighting, containership, warship, submarine

Neki skupovi, poput GLSD [173] 1 McShips [172] skupova podataka, ukljucuju i primjere
prikupljene putem interneta. Vecina slika u GLSD [173] skupu podataka prikupljena je s
interneta te obuhvaca razlicite svjetske luke, dok manji dio dolazi s nadzornog sustava Zhuhai
Hengqin New Area, u Kini. Ovaj skup podataka obuhvaca Sirok spektar slika koje sadrze
male objekte (manje od 32 x 32 piksela) i objekte srednje veliCine (izmedu 32 x 321 96 x 96
piksela), obuhvaca takoder i neke neobi¢ne primjere i situacije, poput slika plovila u plamenu
te mozaike slika plovila. McShips [172] skup podataka obuhvaéa 14709 slika podijeljenih
u skup za treniranje (10297) i skup za testiranje (4412). Slike sadrze Sest kategorija ratnih
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1 sedam kategorija civilnih brodova. Podaci su prikupljeni putem razlicitih izvora poput
web-trazilica, foruma, portala te videozapisa i nadzornih kamera, osiguravajuci prisutnost
razlicitih pozadina, osvjetljenja te atmosferskih uvjeta.

Najrecentniji skup podataka, MVDD13 [178], razvijen je kao odgovor na nedostatak
javno dostupnih skupova podataka za razvoj modela vizualne percepcije autonomnih bespo-
sadnih povrSinskih vozila (engl. Unmanned Surface Vehicle, USV). On ukljucuje razne vrste
plovila te obuhvaca razlicita osvjetljenja i vremenske prilike, kao i primjere s okluzijama
plovila, kako bi se omogucila Sto bolja generalizacija detektora na stvarne uvjete pomorskih
okruZenja. Za istraZivanje u sklopu doktorskog rada znacajan je i Split Port Ship Classifica-
tion Dataset (SPSCD) [176] koji obuhvaca slike splitske luke snimljene jednom kamerom u
razdoblju od veljace 2020. godine do prosinca 2022. godine, obuhvacajuci razli¢ita godiSnja
doba, dijelove dana te vremenske uvjete. Ovaj skup podataka odraZzava specificnosti medi-
teranskih luka, poput splitske luke, gdje pomorski promet varira od manjih i srednjih plovila
koja Cesto nisu pracena uobicajenim sustavima za nadzor pomorskog prometa do velikih
putniCkih trajekata i kruzera. Na prikupljenim slikama, znanstvenici s Pomorskog fakul-
teta u Splitu identificirali su i precizno oznacili dvanaest kategorija brodova. Medutim, ovaj
skup podataka prikladan je iskljucivo za detekciju i klasifikaciju plovila, ali ne omogucava
evaluaciju algoritama za pracenje.

Medu skupovima podataka navedenim u Tablici 3.2, samo su SMD [168], LMD-Tship
[174], SeaSAw [4] i FVessel [177] prikladni za evaluaciju algoritama za pracenje plovila.
Singapore Maritime Dataset (SMD) [168] sadrzi 51 videozapis visoke rezolucije snim-
ljen na razli¢itim lokacijama i rutama u vodama oko Singapura. Vecina videozapisa (njih
40) snimljena je s obale kamerom postavljenom na fiksnom postolju, dok su ostali (njih 11)
snimljeni kamerom s broda u pokretu. Od deset klasa objekata, njih polovica ne pripada
kategorijama brodova. Nadalje, dostupne anotacije su u .mat formatu te zahtijevaju dodatno
procesiranje pri koriStenju s popularnim bibliotekama dubokog uc¢enja. LMD-TShip [174]
skup podataka obuhvaéa 191 videozapis snimljen fiksnim kamerama postavljenim na dva
plovila te kamerama i mobilnim telefonima s obale. Podaci su podijeljeni u skup za tre-
niranje (152 videozapisa, 31527 okvira) 1 skup za testiranje (39 videozapisa, 8713 okvira).
Ukljucuje pet klasa plovila: cargo ships, fishing ships, passenger ships, speed boats, unman-
ned ships. Glavni nedostatak ovog skupa podataka je u tome Sto se uglavnom radi o jednom
plovilu po videozapisu. NajopseZniji skup podataka, Sea Situational Awareness (SeaSAw)
[4], sadrZi podatke snimane kamerama s brodova u pokretu na nekoliko razli¢itih geograf-
skih lokacija duZ Isto¢ne obale SAD-a, u Bostonskoj luci i Europi. Ukljucuje dvanaest klasa
objekata, od kojih njih pet ne odgovara brodovima (dredge, wind turbine, marker, mooring
buoy, miscellaneous). lako je predstavljen u sklopu CVPR konferencije 2022. godine, ovaj
skup podataka jos uvijek nije javno dostupan. FVessel [177] je javno dostupan skup po-
dataka koji kombinira videosnimke plovila s pripadaju¢im AIS zapisima te je namijenjen

evaluaciji algoritama za detekciju, pracenje i multimodalnu fuziju podataka. Sastoji se od
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26 videozapisa snimljenih fiksnom obalnom kamerom i 7625 dodatnih slika. Skup poda-
taka sadrzi samo jednu klasu plovila te obuhvaca raznolike scenarije s primjerima okluzija
i promjenama osvjetljenja. Iako videozapisi FVessel skupa podataka traju ukupno vise od
pet sati, prosjecno se pojavljuje tek oko 0.35 plovila po minuti, odnosno jedno plovilo sva-
kih priblizno tri minute. Primjerice, u videozapisu duljine 8:08 min pojavljuju se samo dva

plovila, dok se u snimci trajanja 6:10 min javlja samo jedno.

3.2. Detekcija i pracenje plovila

Prvi dio ovog potpoglavlja donosi pregled radova posveéenih detekciji plovila na RGB sli-
kama. Kbvaliteta detekcija izravno utjeCe na performanse algoritma za pracenje, posebno
u slucaju algoritama temeljenih na detekciji. Stoga je vazno analizirati postojeée pristupe
detekciji kako bi se bolje razumjela njihova ogranicenja i prednosti u kontekstu praéenja
plovila. U drugom dijelu fokus je na istraZivanjima koja se bave samim praenjem plovila iz

RGB videozapisa.

3.2.1. Radovi koji se bave iskljucivo detekcijom plovila

U razmatranim radovima koji se bave iskljucivo detekcijom plovila, od dvostupanjskih de-
tektora najzastupljeniji je Faster R-CNN detektor. Fu i suradnici [179] koriste model za
detekciju plovila baziran na Faster R-CNN detektoru koji upotrebljava ResNet [180] mrezu
za ekstrakciju znacajki 1 metodu normalizacije mini-grupe [181]. Ovaj pristup kombinira
se s metodom selektivnog ucenja na teSkim primjerima kako bi se poboljSale performanse
detektora u sloZenim pomorskim okruzenjima. Sli¢no, Faster R-CNN s ResNet mrezZom i
odabirom teskih primjera, koristi se i u [182]. Qi i suradnici [183] predlazu modificiranu
verziju Faster R-CNN mreZe, pri ¢emu se prije same detekcije provodi postupak smanje-
nja veliCine slike i semantickog suzavanja scene. Ova tehnika omogucuje isticanje klju¢nih
informacija i usmjeravanje paznje prema ciljanim podrucjima gdje bi se plovila mogla nala-
ziti. Detekcija se zatim provodi Faster R-CNN mreZe preoblikovane u hijerarhijsku mrezu
suZavanja, ¢ime se smanjuje opseg pretrage detektora i poboljSava brzina detekcije.
Zahvaljujuci svojoj sposobnosti brze i precizne detekcije objekata u stvarnom vremenu,
jednostupanjski YOLO detektor postao je vodeéi izbor u primjenama za detekciju plovila,
Sto se jasno moze vidjeti iz Tablice 3.4. U radu [184], ispituju se performanse YOLOvV2
detektora za detekciju i klasifikaciju plovila, usporedujuéi varijantu detektora predtreniranu
na PASCAL VOC skupu podataka s onom koja je trenirana na SMD skupu podataka. Za de-
tekciju objekata na povrSini mora, u radu [185] primjenjuje se unaprijedena verzija YOLOV3
detektora, koja integrira DenseNet [ 186] model u Darknet-53 okosnicu, s ciljem poboljSanja
prilagodljivosti bespilotnih plovila tijekom dugotrajnih misija. Modificirana varijanta YO-

LOVS detektora prilagodena detekciji plovila na snimcima besposadnih povrSinskih plovila,
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predstavljena je u [187]. Ova inacica koristi K-means algoritam za optimizaciju referentnih
grani¢nih okvira te uklju¢uje Ghost modul [188] i transformere. Shi 1 suradnici [19] takoder
predstavljaju model koji poboljsava YOLOVS i nazivaju ga DrbL.SK. Ovaj model integrira
modul za dinamicki odabir jezgre u okosnici detektora, dilatiranu konvoluciju s velikom jez-
grom za smanjenje broja parametara te CIoU [189] funkciju gubitka za ubrzanu konvergen-
ciju. U [190], Cafaro i suradnici koriste YOLOv6-n model za detekciju brodova te dobivene
informacije komplementiraju s podacima radara/LIDAR-a i AIS prijemnika. Wu i suradnici
[191] predstavljaju poboljSanu varijantu YOLOvV7 detektora koja koristi referentne granicne
okvire koji su bolje prilagodeni razliitim veli¢inama 1 oblicima brodova, integrira modul
za fuziju znacajki razlic¢itih skala i agregacijsku mreZu za fuziju mapa znacajki razlicitih ra-
zina. Unaprijedena verzija YOLOv7-tiny detektora, nazvana YOLOv7-Ship, predloZena je u
[192] za detekciju brodova u sloZenim pomorskim okruzenjima. U usporedbi s baznom ver-
zijom, YOLOv7-Ship pokazuje bolju to¢nost u detekciji objekata razlicitih veli¢ina, malih
i djelomic¢no zaklonjenih objekata. Ucinkovitije varijante YOLOV7-tiny detektora, koje po-
kuSavaju rijeSiti izazov visokih raCunskih troSkova postojecih modela za detekciju brodova
uz zadrZavanje to¢nosti detekcije, predloZzene su i u radovima [193, 194]. Zhao i Song [195]
predstavljaju ekstenziju YOLOvVS detektora koja standardnu okosnicu za ekstrakciju znacajki
zamjenjuje kombinacijom efikasnog MobileViTSF vizualnog transformera i MobileNetv2
[196] mreZe, klasi¢ne konvolucijske blokove zamjenjuje GSConv blokovima [197] te koristi
redizajnirani C2f blok YOLOvS8 mreZze. YOLO-FE detektor, varijanta YOLOvV8-n modela
prilagodena za rad na krajnjim uredajima, predstavljena je u [198]. Model integrira Fas-
terNet blok [199] radi smanjenja sloZenosti i povecanja brzine izracuna, te ukljucuje EMA
mehanizam paZnje [200] za poboljSano razumijevanje globalnog konteksta uz istovremeno
smanjenje racunskih resursa. U radu [201], razvijena je nova ALF-YOLO arhitektura koja u
YOLOvS8 integrira: asimptotsku mrezu znacajki piramide (engl. Asymptotic Feature Pyramid
Network, AFPN) [202] kako bi se obogatila reprezentacija znacajki koriStenjem semanti¢kih
informacija s viSe razina i LSK (engl. Large Selective Kernel) mehanizam pozornosti koji
omogucuje detektoru da se viSe usredotoci na kljune znacajke plovila, eliminirajuci smet-
nje sloZenih okolisnih ¢imbenika. Ucinkovitije varijante YOLOvVS8 detektora, EL-YOLO 1
AFF-LightNet, predlozene su u [203, 204]. EL-YOLO (Efficient Lightweight YOLO) [203]
koristi sveobuhvatnu analizu znacajki okosnice modela kroz povecanu fuziju informacija,
novi AWIoU gubitak i tehniku pohlepnog uklanjanja nepotrebnih filtera s ciljem smanjenja
sloZenosti mreZe. Yuan i suradnici [204] u AFF-LightNet modelu kombiniraju optimiziranu
operaciju konvolucije GhostConv [188] s iterativnim mehanizmom fuzije znacajki temelje-
nom na mehanizmu pozornosti, te koriste SIoU [205] funkciju gubitka. S druge strane, Liu 1
Zhu [206] koriste Res-YOLOX model koji u originalni YOLOX uvodi rezidualnu strukturu
i CIoU [189] funkciju gubitka.

Iako YOLO detektor prevladava u vecini istrazivanja, neki autori odlucuju se za alter-

nativne jednostupanjske detektore, poput CenterNet-a ili SSD-a. U ¢lanku autora Iancu i
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suradnici [207], evaluiraju performanse CenterNet detektora s razli¢itim ekstraktorima zna-
Cajki na prilagodenoj varijanti ABOships skupa podataka. Ova varijanta ukljuCuje izbaci-
vanje objekata koji zauzimaju manje od 16> piksela, te agregaciju originalnih trinaest klasa
ABOship skupa podataka u Cetiri superklase radi ublazavanja neuravnoteZenosti klasa. SSD
detektor, prilagoden opaZanju ekstremnih varijacija u veli€ini 1 obliku brodova, koristi se za
detekciju brodova u Harbour Surveillance skupu podataka [3]. Li i suradnici [208] predlazu
algoritam za detekciju objekata na vodenoj povrSini na panoramskim slikama temeljen na
poboljSanoj varijanti SSD-a u kojoj je VGG16 [209] zamijenjena s ResNet-50 [180] mreZom
te je dodano pet slojeva za ekstrakciju znacajki.

Studije koje usporeduju performanse razli¢itih detektora provedene su u nekoliko
istrazivackih radova. U [210] je dana usporedba Faster R-CNN i Mask R-CNN detektora
(s ResNet101 okosnicom), koji su prethodno trenirani na skupovima podataka ImageNet 1
MS COCO, primijenjenih na SMD skupu podataka. Autori rada [170] evaluiraju detektore
Fast R-CNN, Faster R-CNN s vise razli¢itih okosnica, SSD i YOLOvV2 na SeaShips skupu
podataka. Usporedba Faster R-CNN, SSD, YOLOv2, YoLOv3 i YOLOvV3SPP detektora
na McShips skupu podataka dana je u [172]. Detektori Faster R-CNN, SSD, EfficientDet
i RFCN su evaluirani na ABOships skupu podataka u [1]. Rad [173] daje usporedbu de-
vet razli¢itih detektora, ukljucujuci Faster R-CNN 1 RetinaNet detektore, na GLSD skupu
podataka. U radu [178], Wang 1 suradnici usporeduju performanse osam state-of-the-art de-
tektora (Faster R-CNN, SSD, YOLOv3, RetinaNet, YOLOv5s, FCOS, YOLOX, DETR) na
MVDD13 skupu podataka. U svom sljedeCem istrazivanju [211] razvijaju AodeMar, novi
detektor optimiziran za bolju detekciju zaklonjenih brodova. Njegova robusnost sloZenim
pomorskim uvjetima takoder je testirana na MVDD13 skupu podataka, uz usporedbu s de-
tektorima Faster R-CNN, SSD, YOLOv3-v5, YOLOv7, YOLOvS8 i DETR. Zhao i suradnici
[212] usporeduju dvanaest razliCitih detektora, medu kojima su Faster R-CNN, SSD, Re-
tinaNet i razne varijante YOLO detektora, na privatnom skupu podataka koji sadrzi slike
snimljene bespilotnim letjelicama. U radu [213], analiziraju se performanse tri razli¢ite vari-
jante YOLO detektora (YOLOVS-s, YOLOv7, YOLOvVS-s) na zadatku detekcije brodova na
slikama snimljenim pri ulazu u marinu u Biogradu na Moru te na ulazu u Kanal sv. Ante u
Sibeniku. S druge strane, Heller i suradnici [214] istraZuju primjenu dviju verzija YOLOv4
detektora za detekciju objekata na moru, ukljuCujuci 1 razliCite vrste plovila, na krajnjim
uredajima ugradbenih sustava. U svom radu koriste kombinaciju SMD 1 SeaShips skupova
podataka, zajedno s MODD skupom podataka [215, 216] koji je posebno dizajniran za za-
datak segmentacije slike u tri prirodna podrucja (nebo, obalu i more), te detekcije velikih i

malih prepreka na morskoj povrSini.
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Tablica 3.4: Dosadasnja istraZivanja vezana za detekciju plovila.

Rad Godina Detektor Podaci
Zwemer i sur. [3] 2018. modificirani SSD Harbour Surveillance
Lee i sur. [184] 2018. YOLOV2 PASCAL VOC, SMD
Fuisur. [179] 2018. modificirani Faster R-CNN privatni podaci
) Fast R-CNN i Faster R-CNN )
Shao i sur. [170] 2018. ) ) SeaShips
s viSe okosnica, SSD, YOLOv2
Zou i sur. [182] 2019. modificirani Faster R-CNN SMD
Qiisur. [183] 2019. modificirani Faster R-CNN privatni podaci
Moosbauer i sur. [210]  2019. Faster R-CNN, Mask R-CNN SMD
Liisur. [185] 2020. modificirani YOLOv3 USV privatni podaci
) Faster R-CNN, SSD, YOLOV2, .
Zheng i sur. [172] 2020. ) McShips
YoLOv3 1 YOLOv3SPP
o o slike iz razli¢itih izvora,
Lii sur. [208] 2021. modificirani SSD )
panoramske slike
) Faster R-CNN, SSD, .
Iancu i sur. [1] 2021. ) ABOships
EfficientDet, RFCN
] devet razliCitih detektora
Shao i sur. [173] 2021. ] ] GLSD
(Faster R-CNN, RetinaNet i dr.)
. ) kombinacija
Heller i sur. [214] 2022. YOLOv4, YOLOvV4-tiny
SMD, SeaShips i MODD
Liu i Zhu [206] 2022. Res-YOLOX privatni podaci
) o Game of DL: ship dataset,
Zhang i sur. [187] 2023. modificirani YOLOvV5 ) _ )
privatni USV podaci
. COCO, ABOships
Cafaro i sur. [190] 2023. YOLOvV6-n ) _ )
privatni podaci
Wuisur. [191] 2023. modificirani YOLOvV7 SeaShips
Zhao i Song [195] 2023. modificirani YOLOV8 SeaShips
Iancu i sur. [207] 2023. CenterNet poboljSani ABOships
) YOLO-FE baziran na . . .
Cheng i sur. [198] 2023. privatni podaci

YOLOV8-n

Nastavlja se na sljedecoj stranici
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Tablica 3.4 — Nastavak

dvanaest razliCitih detektora
Zhao i sur. [212] 2024.  (Faster R-CNN, , RetinaNet, UAV privatni podaci

razne varijante YOLO-a i dr.)

. ALF-YOLO SeaShips,
Wang i sur. [201] 2024. . .
baziran na YOLOv8 McShips
. . YOLOSeaShip baziran na .
Jiang i sur. [193] 2024. SeaShips
YOLOV7-tiny
o YOLOVS-s, YOLOvV7 . . .
Correira i sur. [213] 2024. privatni podaci
YOLOVS-s
Yang i sur. [203] 2024. EL-YOLO baziran na YOLOV8 ABOships, SeaShips
Faster R-CNN, , YOLOV3,
Wang i sur. [178] 2024. RetinaNet, YOLOvVS5s, FCOS, MVDDI13
YOLOX, DETR
Wang i sur. [211] 2024. novi AodeMar detektor MVDD13
L YOLO-GCYV baziran na SeaShips + dodatni
Jin i sur. [194] 2025. . S )
YOLOv7-tiny privatni i javni pdoaci
. AFF-LightNet .
Yuan i sur. [204] 2025. SeaShips
baziran naYOLOV8
. DrbLSK _
Shi i sur. [19] 2025. ABOships
baziran naYOLOV5

3.2.2. Pracenje plovila

Iako su detekcija i pracenje plovila usko povezani zadaci, istraZivanja u podrucju pracenja
plovila znatno zaostaju za onima koja se bave detekcijom. To potvrduju bibliometrijski
podaci - od 2020. do danas (studeni, 2025.), Web of Science (WoS) baza podataka biljezi
2114 radova vezanih uz pojam "ship detection”, dok je radova povezanih s pojmom "ship
tracking" svega 174. Slican omjer prisutan je i u IEEE Xplore bazi (10257 prema 91). Kada
se dodatno filtriraju istraZivanja koja ne koriste standardne RGB videozapise u kombinaciji s
metodama dubokog ucenja za automatizirano pracenje, ionako malen broj relevantnih radova
dodatno se smanjuje.

Sazeti prikaz relevantnih istraZivanja koja se bave pracenjem plovila na RGB videozapi-
sima dan je u Tablici 4.1. Zbog preglednosti, u stupcu "Pracenje” Koristi se oznaka "*" kada
se u istraZivanju koristi modifikacija ili proSirenje navedenog algoritma praenja. Primjerice,

StrongSORT™ oznaCava da se u znanstvenom radu koristi modificirana verzija StrongSORT-
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a, dok StrongSORT predstavlja originalnu implementaciju tog algoritma.

Iz Tablice 4.1 moze se uociti da recentni radovi iz podrucja pracenja plovila najcesce
koriste kombinaciju YOLO detektora i algoritama pracenja iz SORT familije, pri ¢emu je
najzastupljeniji DeepSORT algoritam. Modificiranu verziju YOLOv3 algoritma u kombi-
naciji s DeepSORT algoritmom koriste u [217] za detekciju i pracenje brodova u unutarnjim
plovnim putevima - na rijeci Yangtze u Kini. Uz optimizaciju referentnih grani¢nih ok-
vira, autori zamjenjuju sigmoidnu aktivacijsku funkciju klasifikatora softmax aktivacijom,
te predlazu koriStenje poboljSane verzije NMS algoritma za ucinkovitije uklanjanje redun-
dantnih grani¢nih okvira. U [218], fokus je na praenju brodova za maglovita vremena.
Prvo se pomocu konvolucijske neuronske mreZe iz svakog okvira videozapisa ukloni ma-
gla, a zatim se za detekciju i pracenje koriste YOLOV5 i DeepSORT. PoboljSane verzije
YOLOVS5 1 YOLOX algoritma u kombinaciji s originalnim DeepSORT algoritmom koriste
se za pracenje plovila i u radovima [219, 220]. S druge strane, modifikacije DeepSORT
algoritma implementirane su u [221, 222, 223]. Qi i suradnici [221] produljuju "vrijeme
¢ekanja" prije brisanja izgubljene putanje sa 30 na 300 uzastopnih okvira. Dodatno se, u
svakom koraku ¢ekanja, povrSina posljednjeg grani¢nog okvira te putanje povecava za 10%,
sve do maksimalnih 2000 piksela, nakon ¢ega se putanja brise. U [222], predlaze se kombi-
nacija poly-YOLO modela za detekciju 1 poboljSanog DeepSORT modula (engl. Enhanced
DeepSORT, EDS) za pracenje plovila. EDS modul koristi Gaussov filter za smanjenje Suma
i pozadinske interferencije, te primjenjuje normalizaciju histograma kako bi se uravnoteZzila
raspodjela kontrasta slike, ¢cime se poboljSava pracenje plovila pri slaboj vidljivosti. Zhang
1 suradnici [223] koriste optimizirani YOLOvV7 detektor zajedno s varijantom DeepSORT
algoritma koja u finalnoj fazi pridruZivanja umjesto IoU koristi DIoU [189] mjeru sli¢nosti.

U nekoliko radova koriste se i drugi popularni algoritmi temeljeni na detekciji, preciznije
ByteTrack i StrongSORT. Wu i suradnici [224] koriste poboljSani YOLOVS u kombinaciji
sa StrongSort algoritmom za praéenje brodova na videozapisima snimljenim bespilotnom
letjelicom. U radu [225], Han i Jung predlazu varijantu StrongSORT algoritma nazvanu Sta-
bleSORT, koja ucinkovito rjeSava izazove nepravilnih kretanja besposadnih plovila na kojima
je postavljena kamera, kao i nestabilnosti uzrokovane valovima i vjetrovima. StableSORT
koristi B-IoU [226] kako bi prevladao ogranicenja standardne IoU metrike u dinami¢nim
uvjetima, te prilagodeni NSA Kalmanov filter koji ¢ u R, = (1 —¢)R, postavlja na jedan
kada pouzdanost detekcije premasuje zadanu granicu. Navedenim se uklanja Sum mjerenja
i maksimizira utjecaj detekcije visoke pouzdanosti prilikom aZuriranja stanja sustava u Kal-
manovom filteru. Hao i suradnici [227] koriste poboljSanu verziju YOLOv7-tiny detektora,
koja pokazuje bolje performanse u detekciji brodova na sloZenim pozadinama, razliitim
skalama te u sluc¢ajevima djelomicne zaklonjenosti. Detektor se kombinira s unaprijedenom
implementacijom StrongSORT algoritma, koji koristi OSNet [228] mreZu za ekstrakciju vi-
zualnih znacajki, ¢ime se smanjuje uCestalost zamjena identiteta pracenih plovila. Za pra-

¢enje plovila u stvarnom vremenu, Xing et al. [229] sugeriraju koriStenje YOLOVS-FAS
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algoritma, poboljSane verzije YOLOvS8n algoritma dizajnirane za primjenu na uredajima s
ogranicenom memorijom i raCunalnim resursima, zajedno s ByteTrack algoritmom. Adap-
Track algoritam za pracenje plovila, koji se oslanja na FairMOT algoritam, opisan je u radu
[230]. AdapTrack algoritam implementira strategiju asocijacije ByteTrack algoritma. U
prvoj fazi, detekcije visoke pouzdanosti se pridruZuju putanjama koriste¢i vizualne karakte-
ristike. Zatim, u drugoj fazi, preostale putanje se povezuju s detekcijama niske pouzdanosti
temeljem IoU vrijednosti. S druge strane, Zou i sur. [231] u obje faze asocijacije, pri povezi-
vanju s detekcijama visoke pouzdanosti i s onima niske pouzdanosti, primjenjuju jedinstvenu
mjeru sli¢nosti koja, uz IoU, ukljucuje i smjer kretanja plovila. U svom sljede¢em radu, Zou
i sur. [232] takoder kombiniraju IoU sa smjerom kretanja plovila u koraku asocijacije, ali
ovog puta koriste VFE-YOLO detektor. Ova poboljSana varijanta YOLOX detektora koristi
viSeskalne veze u arhitekturi izdvajanja znacajki koje poboljSavaju prepoznavanje plovila.
Autori uvode i strukturni pozornostni modul koji smanjuje utjecaj redundantnih informacija
te povecava reprezentacijsku sposobnost modela.

Za razliku od pristupa koji se oslanjaju na popularne algoritme pracenja, u radovima
[233, 234, 235, 236] predstavljeni su alternativni pristupi pracenju plavila temeljeni na
detekciji. Wu i suradnici [233] koriste YOLOvV3 i YOLOVS detektore u kombinaciji s Ro-
DAN (Robust Deep Affinity Network) algoritmom pracenja koji, kroz tri razli¢ita modula,
objedinjuje informacije o tri klju¢na aspekta objekta: njegovoj veliini, regiji koju obuhvaca
i njegovom kretanju. Prvi modul spaja znacajke razliCitih skala, ¢ime omogucuje bogatiju i
semanticki potpuniju reprezentaciju svakog plovila, smanjujuéi njegovu osjetljivost na vari-
jacije u velicini. Drugi modul poboljSava reprezentaciju znacajki i rjeSava problem velikih
grani¢nih okvira koji obuhvacaju pozadinu, osobito u slucaju plovila s dodacima poput jar-
bola ili drugih nadogradnji. Tre¢i modul dodatno usmjerava i fino podeSava preliminarne
rezultate pracenja, provjeravajuci uspjeSno povezane, nove i izgubljene putanje, ¢cime algori-
tam postaje manje ovisan o detektoru i otporniji na okluzije. Autori u [234] evaluiraju Cetiri
varijante YOLO algoritma za detekciju brodova na SMD skupu podataka te predlazu algo-
ritam za pracenje plovila na videozapisima snimljenim kamerom na brodu u pokretu koji
koristi pridruzivanje temeljem IoU vrijednosti detekcija iz trenutnog okvira i pracenih obje-
kata i pridruZivanje zasnovano na sli¢nosti ORB (oriented FAST and rotated BRIEF) znacajki
1 veli€ini grani¢nih okvira. Wang i suradnici [235] koriste YOLOVS detektor u kombinaciji s
algoritmom pracéenja koji integrira znanje da "objekti ne mogu iznenada nestati". U tu svrhu,
algoritam ukljucuje dodatnu granu kojoj je cilj locirati sve objekte iz prethodnog kadra u
trenutnom okviru videozapisa. Za to se koristi algoritam pracenja pojedinac¢nih objekata
temeljen na sijamskim neuronskim mreZama, koji racuna sli¢nost izmedu objekta 1 poten-
cijalnih regija u trenutnom okviru gdje bi se objekt mogao nalaziti. Ako znacajke iz novog
okvira znacajno odstupaju od onih u posljednjih N okvira, objekt se smatra nestalim i prekida
se potraga za njim. U radu [236], koristi se jednostavan model prac¢enja nalik SORT algo-

ritmu uz dodatak kaskadnog pridruZivanja. Algoritam pracenja temelji se na predvidanjima
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Kalmanovog filtera, te kaskadnom i IoU pridruZivanju madarskim algoritmom.

Nesto drugadiji pristupi pracenju, koji nadilaze klasi¢ne okvire popularnih algoritama,
predstavljeni su u [237, 238, 239]. Shan i suradnici [237] koriste SiamFPN model za pra-
¢enje brodova koji se sastoji od sijamske mreze s FPN podmreZzama i tri mreZe za predla-
ganje regija od interesa. Autori u [239] predstavljaju novi algoritam pracenja zasnovan na
mehanizmu dinamic¢ke memorije i hijerarhijskom modelu koji je svjestan konteksta. Meha-
nizam dinamicke memorije pohranjuje znacajke prethodnih okvira te ih dinamicki integrira
s trenutnim znacajkama kako bi se u model inkorporirao vremenski kontekst i medusobna
koreliranost okvira videozapisa. Hijerarhijski model koristi se za ekstrakciju kontekstualne
informacije na razli¢itim skalama te globalnih i lokalnih informacija pomocu slojeva saZima-
nja i konvolucije s dilatacijom. Luo i suradnici [238] primjenjuju CO-Tracker [240], model
zasnovan na transformerima, u kombinaciji s LSTM i1 graf neuronskim mreZama s mehaniz-

mom pozornosti.

Tablica 3.5: Dosadasnja istraZivanja vezana za pracenje plovila.

Rad Godina Detekcija Pracenje Podaci
Shan 1 sur. SiamFPN model zasnovan na sijamskim . . .
2020. privatni podaci
[237] neuronskim mreZama
Wu i sur. 2001, YOLOv3i RoDAN SMD i privatni
[233] YOLOVS HSD skup podataka
Jie i sur. o ) . .
217 2021.  poboljsani YOLOvV3 DeepSORT privatni podaci
Lii sur. o ) . .
219] 2022.  poboljsani YOLOVS DeepSORT privatni podaci
) o algoritram temeljen
Park i sur. Cetiri varijante )
2022. na IoU 1 ORB_vel SMD
[234] YOLO-a o
pridruZivanju
L YOLOVS-FAS
Xing 1 sur. . . .
(220] 2023. zasnovan na ByteTrack privatni podaci
YOLOV8-n
Chen i sur. AdapTrack: algortiam zasnovan na FairMOT-u
2023. o SMD
[230] s ByteTrack asocijacijom
Yang i sur. Algoritam zasnovan na mehanizmu dinamicke .
2023. o . LMD-Tship
[239] memorije i hijerarhijskom modelu
Zhou i sur.
0218] 2023. YOLOVS DeepSORT privatni podaci

Nastavlja se na sljedeéoj stranici
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Tablica 3.5 — Nastavak

LiviLi
[1;210] ' 2023, poboljsani YOLOX DeepSORT LMD-TShip
Wang i sur. 2003, YOLOVS a‘lgoritam ‘ .SeaS.hips i |
[235] temeljen na znanju privatni podaci
Wu i sur. " . PASCAL VOC i
2024.  poboljsani YOLOVS StrongSORT o .
[224] privatni podaci
Luo i sur. CO-Tracker zasnovan na transformerima . . .
2024. privatni podaci
[238] s LSTM graf neuronskim mreZama
Qi i sur. w . . . .
221] 2024.  poboljsani YOLOVS DeepSORT* privatni podaci
Han i Jung . . .
2024. YOLOvVS StrongSORT* privatni podaci
[225]
Ceni sur. o pracenje temeljeno SeaShips i
2024.  poboljsani YOLOV7 o .
[236] na Kalmanovom filteru privatni podaci
Chen i sur.
2024. poly-YOLO DeepSORT* SMD
[222]
Zhang i sur. o . . .
(23] 2025.  poboljsani YOLOV7 DeepSORT* privatni podaci
Hao i sur. poboljSani
2025. StrongSORT* SMD
[227] YOLOV7-tiny
Zou i sur. asocijacija u dvije faze
2025. YOLOX FVessel
[231] (IoU + smjer kretanja)
Zou i sur.
232] 2025. VFE-YOLO VSATrack FVessel

3.3. Problem okluzije objekata

U posljednje vrijeme, objavljena je nekolicina radova koji istraZzuju kako poboljsati perfor-

manse algoritama pracenja tijekom okluzija objekata. Veéina dosadasnjih istraZivanja o ok-

luzijama fokusira se na praéenje pjeSaka i vozila, dok je podrucje pracenja plovila znatno

manje istrazeno.
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3.3.1. Istrazivanja problema okluzije opcenito

Cao i suradnici [27] predstavljaju OC-SORT algoritam, unaprijedenu verziju klasi¢nog
SORT [58] algoritma koja je usmjerena na prevladavanje ogranienja vezanih za okluzije
1 ne-linearna kretanja objekata. Njihov pristup ukljucuje dodatno aZuriranje parametara Kal-
manovog filtera kada se objekt ponovno pojavi nakon §to je bio zaklonjen, ¢ime se smanjuje
akumulirana pogreska. Ovo azuriranje temelji se na virtualnoj putanji objekta generiranoj
koriStenjem podataka o posljednjoj detekciji prije okluzije i prvoj nakon nje. Nadalje, mjera
sli¢nosti za asocijaciju putanja i detekcija ukljucuje 1 analizu konzistentnosti brzine kretanja
objekata, Sto dodatno doprinosi preciznosti pracenja. U [52], autori sugeriraju zamjenu Kal-
manovog filtera mreZom konvolucijskih propusnih povratnih celija (ConvGRU) kako bi se
rijeSio problem dugotrajnih okluzija u algoritmu zajednicke detekcije 1 pradenja. Ova mreZa
omoguduje koristenje povijesnih prostorno-vremenskih informacija viSe objekata i ucenje
dugorocnih ovisnosti.

Zhang i suradnici [160] predlaZzu strategiju asocijacije koja je robusnija na okluzije obje-
kata. Za razliku od DeepSORT [59] algoritma, zadrZavaju grani¢ne okvire probnih putanja
cak 1 kada im tri uzastopna okvira nije pridruZzena detekcija, te ne briSu grani¢ne okvire pu-
tanja maksimalne starosti jer bi upravo ti okviri mogli odgovarati objektima koji su dulje
vrijeme zaklonjeni. Navedene grani¢ne okvire nazivaju grani¢nim okvirima visoke vrijed-
nosti. NepridruZene detekcije u koraku asocijacije pridruZuju se granicnim okvirima visoke
vrijednosti i predvidenim grani¢nim okvirima, te se odabire ono pridruZivanje koje ima ma-
nju kosinusnu udaljenost. Za predvidanje se koristi metoda najmanjih kvadrata ako je broj
okvira od kada je putanji pridruzena detekcija manji od zadane grani¢ne vrijednosti, inace se
koristi Kalmanov filter.

S druge strane, ByteTrack [60] 1 BoT-SORT [61] algoritmi zadrZavaju gotovo sve detek-
tirane grani¢ne okvire, ukljucujuci i one s niskom pouzdanoséu koji se obicno filtriraju, jer
bi upravo ti grani¢ni okviri mogli sadrzavati objekte koji su djelomic¢no zaklonjeni. PridruZi-
vanje detekcija 1 putanja provodi se u dvije faze. U prvoj fazi, detekcije visoke pouzdanosti
pokuSavaju se pridruZiti postojecim putanjama koriStenjem IoU i/ili vizualne sli¢nosti, dok se
u drugoj fazi asocijacije neuparenim putanjama pridruzuju detektirani granic¢ni okviri niske
pouzdanosti koristeci isklju¢ivo IoU kao mjeru sli¢nosti, buduéi da vizualne znacajke nisu
pouzdane u slucaju zaklonjenih objekata. Autori u [46] primjenjuju slican pristup. Medutim,
oni u drugoj fazi asocijacije, u kojoj se detekcije niske pouzdanosti pridruzuju preostalim
putanjama, koriste prostorno-vremenske znacajke koje u obzir uzimaju odnos prostornog
polozaja objekta i njegovog susjednog okruZenja.

U radu [241], predlaze se unaprijedeni algoritam pradenja temeljen na regresiji koji
koristi regresijsku glavu detektora u dvije faze za predvidanje sljedece pozicije praenog
objekta. Osim regresije aktivnih putanja, provodi se 1 regresija neaktivnih putanja kojima

je regresijska vrijednost pala ispod zadane minimalne vrijednosti i, ili im je regresijom
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dobiveni grani¢ni okvir filtriran algoritmom ne-maksimalnog potiskivanja, Sto moZe biti po-
sljedica okluzije objekta. Pojam zaklonjena putanja odnosi se na aktivnu putanju koja je
potisnuta NMS algoritmom zbog preklapanja s drugom aktivnom zaklanjaju¢om putanjom.
Za nove detekcije koje nisu filtrirane aktivnim putanjama i NMS algoritmom, provjerava se
pripadaju li neaktivnim zaklonjenim putanjama koristeci udaljenost centra granicnog okvira
detekcije 1 predvidene pozicije neaktivne putanje. Ako je ta udaljenost manja od zadane gra-
ni¢ne vrijednosti, neaktivna putanja se ponovno aktivira. Grani¢na vrijednost koja se koristi
za aktivaciju putanje raste s poveanjem brzine putanje i broja okvira u kojima je putanja
bila neaktivna, buduci da oba termina utjecu na (ne)pouzdanost predvidene pozicije.

Han i suradnici [242] predlazu inovativni LSTP modul za predvidanje sljedece pozicije
objekta koji koristi kombinaciju prostornog i vremenskog Transformera, uz metodu asoci-
jacije koja prioritet daje aktivnim 1 zaklonjenim putanjama. Integrirajuci prostorni koder
Transformera za Ceste interakcije objekata i vremenski koder Transformera za pracenje vre-
menskog kontinuiteta putanja, LSTP modul daje dugoro¢no bolja predvidanja za neaktivne
putanje. Osim predvidanja sljedece pozicije objekta, LSTP modul takoder procjenjuje vidlji-
vost predvidenog grani¢nog okvira. Na temelju procijenjene vidljivosti, putanje se kategori-
ziraju kao zaklonjene (vidljivost < grani¢ne vrijednosti) i zaklanjajuée (vidljivost > grani¢ne
vrijednosti). U koraku asocijacije, prioritet se daje pridruzivanju aktivnih putanja nad ne-
aktivnima te zaklanjajucih putanja nad zaklonjenima. Nadalje, detektirani grani¢ni okviri
se razvrstavaju prema pouzdanosti, sprjeCavajuéi pridruZivanje putanja visoke vidljivosti s
detektiranim grani¢nim okvirima niske pouzdanosti, koji obi¢no sadrZe zaklonjene objekte.

Zhou i suradnici [22] u svom algoritmu pracenja implementiraju modul zaduZen za de-
tekciju okluzija, pri cemu objekt smatraju zaklonjenim ako se srediSte njegovog granicnog
okvira nalazi unutar nekog drugog grani¢nog okvira. Vizualne znaCajke objekata za koje je
detektirana okluzija se ne azuriraju kako bi se izbjeglo njihovo ,,zagadenje* tijekom kratko-
trajnih okluzija. U radu [243], autori predlazu adaptivni model koji kombinira predvidanja
dobivena modelima kratkorocnog i dugoro¢nog predvidanja kako bi se poboljSale perfor-
manse tijekom okluzija razli¢itih trajanja. Model kratkoro¢nog predvidanja kombinira pre-
dvidanja dobivena temeljem vizualnih informacija i1 informacija o kretanju, dok se model
dugoro¢nog predvidanja oslanja na kubi¢nu splajn interpolaciju. Dendorfer i suradnici [23]
pokuSavaju rijesiti problem dugotrajnih okluzija predvidaju¢i buduce pozicije objekata ko-
riste¢i simulaciju scene iz pti¢je perspektive i generativne suparnicke neuronske mreze. U
[244], korak asocijacije koristi sekvencijalne znacCajke putanja koje integriraju informacije
iz viSe okvira videozapisa, §to ih ¢ini otpornijima na odredene anomalije. Za ekstrakciju
sekvencijalnih znacCajki, koje istovremeno obuhvacaju i prostornu i vremensku informaciju
o objektu, koristi se AP3D mreza. U radu [245], autori koriste rezultate dobivene modelom
segmentacije prepreka u sceni kako bi identificirali situacije u kojima je objekt zaklonjen
preprekom/pozadinom, dok se vizualni model temeljen na paZnji koristi za rjeSavanje pro-

blema okluzije objekta drugim objektom. PSMOT [246] algoritam koristi model zajednicke
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detekcije 1 ekstrakcije znacajki s R-FCN detektorom u dvije faze. Za rjeSavanje problema
okluzije, PSMOT koristi model osjetljivosti na polozaj. Dobivene klasifikacijske mape osjet-
ljive na polozaj transformiraju se u binarne mape koje ukazuju na dijelove objekta koji su
zaklonjeni, omogucujuéi tako ignoriranje tih dijelova prilikom agregacije znacajki. Na taj

nacin se efikasno smanjuju smetnje uzrokovane okluzijama.

3.3.2. Istrazivanja vezana za okluzije plovila

Wang i suradnici, u svom radu [211], bave se problemom detekcije zaklonjenih plovila, te
predlazu novi model AodeMar, koji unutar YOLO okvira implementira mehanizam paZnje
s ciljem preciznijeg prepoznavanja zaklonjenih brodova. Dani model pomo¢u RCAC3 mo-
dula kombinira znacajke niskog i visokog semantic¢kog znacaja koristeCi rezidualne veze,
¢ime omoguduje preciznije odredivanje grani¢nih okvira zaklonjenih brodova. Nadalje, ko-
riste SP-STR modul za korelaciju semantike znacajki na viSe razina koji kombinira SPP
[247] (Spatial Pyramid Pooling) i STR [248] blok s mehanizmom samopozornosti kako bi
se poboljSala sposobnost klasifikacije zaklonjenih brodova. No, ovaj rad je fokusiran isklju-
¢ivo na poboljSanje detekcije zaklonjenih plovila, ne i na druge aspekte pracenja objekta
tijekom okluzije. Hao i suradnici [227] koriste poboljSanu verziju YOLOv7-tiny detektora,
koja pokazuje bolje performanse u detekciji djelomicno zaklonjenih plovila. Dodatno, in-
tegracijom OSNet [228] mreze za ekstrakciju vizualnih znacajki u StrongSORT algoritam,
reducira se broj zamjena identiteta koje mogu biti uzrokovane okluzijama objekata.

Chen i suradnici u svom radu [249] iz 2020. godine obraduju problem pracenja jednog,
unaprijed definiranog plovila za vrijeme okluzije, oslanjajuci se pritom na klasi¢ne me-
tode kerneliziranih korelacijskih filtera. U recentnom radu iz 2025. [250] koristi se fuzija
informacija iz razlicitih izvora te OC-SORT algoritam pracenja kako bi se umanjio izazov
pradenja plovila za vrijeme okluzija i nelinearnih kretanja. Wang i sur. [235] u svoj algori-
tam pracenja integriraju spoznaju da objekti ne mogu iznenada nestati, te nastoje locirati sve
objekte koji su bili prisutni u prethodnom okviru. Ova metoda prepoznaje nestanak objekta,
odnosno detektira okluziju, kada se znacajke u novom okviru znacajno razlikuju od zna-
Cajki objekta u prethodnih N okvira. Medutim, ne nudi rjeSenja za pracenje zaklonjenih
objekata, ve¢ jednostavno prekida pretragu za objektima koji su nestali.

U radovima [233, 221] problem lakSeg uparivanja zaklonjenih objekata s novim detekci-
jama pokusSava se rijesiti postupnim poveéavanjem posljednjeg grani¢nog okvira izgubljenog
objekta. Wu 1 suradnici [233] dodatno provjeravaju inicijalne rezultate asocijacije kako bi
identificirali putanje koje su stvarno izgubljene. Tim se putanja posljednji grani¢ni okvir po-
vecava kroz maksimalno 50 uzastopnih okvira, a ako nakon tog razdoblja ostanu neuparene,
onda se uklanjaju. S druge strane, u [221], neuparenim putanjama koje ¢ekaju na pridru-
Zivanje u svakom koraku se grani¢ni okvir proSiruje za 10% (s centrom kao srediStem) do

maksimalnih 2000 piksela. Ako se neuparena putanja, koja je dosegla maksimalnu povr-
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Sinu grani¢nog okvira, ne bude povezana s detekcijom, ona se briSe. Takoder, maksimalno
vrijeme Cekanja prije brisanja putanje produljuje se na 300 uzastopnih okvira. Zou i sur. u
radovima [231, 232] za rjeSavanje problema reidentifikacije plovila nakon okluzije predlazu
mjeru sli¢nosti koja, uz IoU, dodatno integrira i smjer gibanja plovila. Ovakav pristup rezul-
tira robusnijim pracenjem te smanjenim brojem zamjena identiteta uzrokovanih okluzijama

u scenarijima plovidbe unutarnjim vodnim putovima.

3.4. Analiza dosadasnjih istrazivanja i otvoreni izazovi

Analiza do sada predstavljenih skupova podataka iz pomorskih okruZenja ukazuje na zna-
¢ajan nedostatak javno dostupnih, oznacenih skupova podataka koji su prikladni za razvoj i
evaluaciju algoritama za pracenje plovila, a koji istovremeno adekvatno obuhvaéaju speci-
ficnosti pomorskih okruzenja i raznolikosti plovila. Kod dostupnih skupova podataka ogra-
ni¢enje predstavljaju scene male gustoce plovila, koje nedovoljno odrazavaju stvarne uvjete.
Takvi skupovi Cesto sadrZe tek nekoliko plovila u vidnom polju §to oteZava procjenu per-
formansi algoritama u dinami¢nim scenarijama s visokom gustoCom prometa. Takoder, za
ispitivanje robusnosti algoritma na dugotrajne okluzije plovila, klju¢no je da skup podataka
sadrzi razli¢ite primjere plovila koja su dugo vremena zaklonjena. Zbog navedenog, istra-
Zivanje u domeni pracenja plovila, osobito uz primjenu najnovijih modela dubokog ucenja,
drasti¢no zaostaje za mnogobrojnim istrazivanjima u podrucju praéenja pjeSaka, a situacija
je jos nepovoljnija kada je rije¢ o pracenju plovila za vrijeme okluzija. Nadalje, vecina is-
traZivanja vezanih za pracenje plovila oslanja se na privatne podatke, $to otezava objektivnu
usporedbu tih metoda. Stoga je neophodno razviti javno dostupne i reprezentativne skupove
podataka za pracenje plovila kako bi se potakao daljnji napredak ovog istrazivackog podrucja
1 omogudila objektivna usporedba postojecih metoda.

Iako su detekcija i pracenje plovila komplementarni zadaci, istraZivanja u podrucju pra-
¢enja plovila znatno zaostaju za istraZivanjima usmjerenima na njihovu detekciju. Neki
od mogucih razloga ukljucuju veci broj javno dostupnih skupova podataka za zadatak de-
tekcije, kao 1 jednostavniju implementaciju detekcije u odnosu na pracenje. Naime, pra-
¢enje plovila zahtijeva ne samo detekciju plovila, ve¢ i dodatne zadatke poput predvida-
nja buducih pozicija pracenih plovila, ekstrakciju vizualnih znacajki, preciznu identifika-
ciju plovila te odrZzavanje konzistentnog identiteta tokom vremena. Mnogi radovi, poput
[217, 229, 224, 219, 220], usredotoceni su na poboljSanje detektora, dok za pracenje koriste
popularne algoritme poput DeepSORT-a, ByteTrack-a i StrongSORT-a u osnovnom obliku,
bez dodatnih prilagodbi ili poboljSanja. lako kvaliteta detekcije znacajno utjeCe na kvalitetu
pradenja, samo poboljSanje detektora ne rjeSava problem dugotrajnih okluzija. Stoga se po-
trebno fokusirati na moguca poboljsanja u ostalim koracima praéenja kako bi se potencijalno
rijeSio problem okluzija.

U nekoliko nedavno objavljenih radova razmatraju se 1 modifikacije popularnih algori-
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tama ili se predlaZzu neki novi algoritmi pracenja. Medutim, ovi radovi problem okluzije
plovila ili u potpunosti zanemaruju ili ga samo djelomicno rjeSavaju. U radovima [211, 227]
fokus je na detekciji djelomi¢no zaklonjenih objekata. Dok se [211] uop¢e ne razmatra pro-
blema pracenja za vrijeme okluzije niti reidentifikacije izgubljenih objekata, [227] uvodi
pobolj$ani model za ekstrakciju vizualnih znacajki koji moZe smanjiti broj pogreSno dodije-
ljenih identiteta nakon perioda okluzije. Ipak, pritom treba uzeti u obzir da vizualne znacajke
objekta koji tek izlazi iz okluzije Cesto nisu reprezentativne, te ovaj pristup sam po sebi ne
rjeSava u potpunosti problem reidentifikacije objekta nakon okluzije. Wang 1 suradnici [235]
koriste metodu koja identificira nestanak objekta, ali umjesto pokuSaja ponovnog pronala-
ska, putanja nestalog objekta se jednostavno brise. Pristup postepenog poveéanja grani¢nog
okvira izgubljenog objekta s ciljem lakSeg buduéeg uparivanja predstavljen je u [233, 221].
Ovaj pristup poprilicno je ogranien. Pretjerano proSirenje grani¢nog okvira moze dovesti
do znacajnih preklapanja s detekcijama drugih objekata, Sto otezava precizno pridruzivanje
1 moZe negativno utjecati na pouzdanost pracenja. Chen i suradnici [250] koriste OC-SORT
algoritam, koji ukljucuje dodatni korak aZuriranja kako bi smanjio pogreSke Kalmanovog
filtera akumulirane tijekom okluzije. Medutim, ovaj algoritam pretpostavlja da ¢e izgub-
ljeni objekt biti ponovno detektiran i ispravno reidentificiran kako bi se dodatno aZuriranje
izvrsilo, §to Cesto nije slucaj, osobito pri duljim periodima okluzije.

Od istraZivanja vezanih uz pracenje plovila, radovi [249, 232, 231] detaljnije se bave
problemom pracenja plovila tijekom okluzije. U radu [249] autori pritom koriste klasi¢ne
metode kerneliziranih korelacijskih filtera. Nadalje, fokus je na pracenju samo jednog, una-
prijed definiranog plovila, Sto predstavlja znatno uZi obuhvat u odnosu na problem okluzija
koji se javlja pri pracenju veceg broja objekata.

Zou i sur. [232, 231] u svojim se radovima prvenstveno oslanjaju na prostorne i dina-
micke informacije o kretanju plovila, koje u razdobljima duljih okluzija postaju sve nepo-
uzdanije. Bududi da se pritom vizualne znacajke plovila u potpunosti zanemaruju, model
ostaje osjetljiv na odstupanja u predvidenim gibanjima te na scenarije u kojima viSe plovila
pokazuje slicne obrasce kretanja. Takav pristup ogranicava pouzdanost reidentifikacije na-
kon okluzije 1 dodatno motivira integraciju komplementarnih vizualnih informacija kako bi
se postiglo stabilnije pracenje u sloZenim uvjetima.

Iz navedenog razmatranja evidentni su nedostaci u postojeCim istraZivanjima vezanim za
praéenje plovila, osobito u kontekstu okluzija. Radovi koji se konkretno bave okluzijama
objekata uglavnom su usmjereni na rjesSavanje problema okluzija u zadacima pracenja pje-
Saka, gdje je karakteristiCna Cesta interakcija medu objektima, nagli i nepredvidljivi obrasci
kretanja te CeSCe kratkotrajne zaklonjenosti. Ideje koje su iznesene u radovima koji istrazuju
okluzije pjeSaka mogu biti korisne i za rjeSavanje problema okluzija kod plovila. Medutim,
vazno je uzeti u obzir specificne karakteristike pomorskih okruZenja, plovila i njihovog kre-
tanja kako bi se razvili efikasniji algoritmi pracenja koji ¢e opCenito imati bolje performanse

i biti otporniji na dugotrajne okluzije. Dakle, postoji znacajna potreba za daljnjim istraZiva-
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njima koja bi mogla rezultirati naprednijim tehnikama i algoritmima, posebno usmjerenih na
rjeSavanje problema dugotrajnih okluzija plovila, ¢ime bi se unaprijedila robusnost i u¢inko-

vitost sustava za prac¢enje plovila u sloZenim uvjetima.
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Pouzdanost i robusnost metoda za pracenje plovila uvelike ovise o kvaliteti i raznovrsnosti
podataka koriStenih tijekom njihovog razvoja. Pregled ranije predstavljenih skupova poda-
taka iz pomorskih okruZenja pokazuje znacajan nedostatak javno dostupnih oznacenih sku-
pova podataka koji su pogodni za razvoj i evaluaciju algoritama pracenja plovila, a isto-
vremeno adekvatno obuhvaéaju sve specificnosti pomorskih okruZenja i raznolikosti plovila.
Dodatan problem predstavlja nedovoljna zastupljenost sloZenih scena koje ukljucuju istovre-
meno pracenje veceg broja plovila, njihovo medusobno mimoilazenje te situacije u kojima
dolazi do djelomicnih ili potpunih okluzija medu plovilima. Nadalje, za ispitivanje robus-
nosti algoritama u uvjetima dugotrajnih okluzija nuZzno je da skup podataka sadrZi i primjere
plovila koja su dulje vrijeme zaklonjena. Bez takvih primjera nije moguce sveobuhvatno
procijeniti stabilnost sustava pracenja u realnim, dinami¢nim uvjetima.

U okviru doktorske disertacije kreiran je novi Split Ship MOT (SSMOT) skup podataka

koji se sastoji od tri komplementarne komponente:

* Skupa za detekciju, koji omogucava razvoj i evaluaciju modela sposobnih za preciznu

lokalizaciju 1 klasifikaciju plovila u pojedina¢nim okvirima videozapisa.

» Skupa za reidentifikaciju (ReID), koji sadrzi slike istog plovila snimljenog u razlic¢i-
tim poloZajima i uvjetima, ¢cime se omogucuje ucenje diskriminativnih znacajki nuZznih
za ponovno prepoznavanje istog objekta nakon prekida pra¢enja zbog ogranicenja de-

tektora ili uslijed okluzije.

* Skupa za pracenje, koji obuhvaca oznaCene videozapise sa scenarijima dugotrajnih
okluzija i mimoilaZzenjima plovila, pruzajuéi tako sveobuhvatan i realisti¢an okvir za

procjenu performansi algoritama praéenja.

Ovakav visSekomponentni dizajn osigurava vecu fleksibilnost i raznolikost u odnosu na
standardne skupove podataka koji se temelje iskljucivo na oznacenim videozapisima. U tak-
vim skupovima, za treniranje detektora najcesée se koriste uzastopni okviri iz ograni¢enog
broja videozapisa koje karakterizira visoka redundancija [251, 252]. U kratkim vremenskim
razmacima javljaju se gotovo identi¢ni prikazi istih objekata, dok su uvjeti snimanja i osvjet-

ljenja unutar jednog videozapisa uglavnom konstantni. Kao rezultat, detektori trenirani na
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uzastopnim okvirima videozapisa imaju smanjenu sposobnost generalizacije na nove scene
1 uvjete. Slican problem javlja se 1 u kontekstu reidentifikacije [253, 254]. Kada se slike is-
tog plovila uzimaju iz susjednih okvira, dobivaju se gotovo identi¢ni vizualni prikazi koji ne
doprinose ucenju diskriminativnih znacajki potrebnih za prepoznavanje plovila u razli¢itim
polozajima, kutovima gledanja te pri promjenama vremenskih uvjeta i osvjetljenja.

Alternativni pristup u literaturi temelji se na evaluaciji pra¢enja na danim skupovima vi-
deozapisa, dok se detektor i ReID model treniraju i evaluiraju na zasebnim skupovima poda-
taka, posebno dizajniranim upravo za te zadatke [235, 224]. Klju¢ni nedostatak ovog pristupa
jest neuskladenost distribucija podataka razli¢itih podskupova, buduci da vizualne karakte-
ristike objekata, uvjeti snimanja ili raspodjela scena u skupu za detekciju i ReID skupu Cesto
ne odgovaraju onima u videozapisima koriStenima za evaluaciju pra¢enja. Dodatno, klase
objekata u tim skupovima ne moraju nuzno odgovarati klasama koje se javljaju u videozapi-
sima za evaluaciju praenja. Zbog toga, u procesu integracije moze do¢i do pada performansi
— detektor i ReID model uce reprezentacije koje nisu u potpunosti prilagodene specifi¢nos-
tima scena u kojima se od njih oekuje zajedni¢ko djelovanje. Takva neuskladenost otezava
i realnu procjenu sustava pracenja, jer rezultati evaluacije djelomi¢no odrazavaju razlicite
distribucije 1 klase podataka koji su se koristili za treniranje pojedinih komponenti.

Upravo navedene probleme adresira SSMOT skup podataka, u kojem su sve tri kompo-
nente — detekcija, reidentifikacija i pracenje — izvedene iz istog izvora i oblikovane prema
konzistentnim kriterijima. Na taj se na¢in osigurava da vizualne karakteristike, uvjeti snima-
nja i distribucija scena budu uskladeni kroz sve zadatke, ¢cime se uklanja problem neusklade-
nosti odvojenih podskupova. Istodobno, nacin konstrukcije detekcijskog i ReID skupa sprje-
¢ava pojavu redundancije uzrokovane uzimanjem uzastopnih, gotovo identi¢nih kadrova, te
osigurava dovoljnu varijabilnost u prikazima istih objekata. Time detektor i ReID model uce
reprezentacije prilagodene stvarnim izazovima pracenja, ali i dovoljno robusne da generali-
ziraju na razli¢ite uvjete snimanja. Evaluacija pradenja je pritom pouzdanija, buduéi da se
temelji na jedinstvenoj, konzistentnoj i raznolikoj podatkovnoj osnovi. Takav dizajn otvara
prostor za razvoj robusnijih sustava, Sto SSMOT skup podataka ¢ini znacajnim doprinosom

u podrucju prac¢enja plovila.

4.1. Opis lokacije i tehnickih specifikacija kamere

Slike 1 videozapisi koriSteni u SSMOT skupu podataka prikupljeni su u splitskoj luci, najve-
¢oj putnickoj luci u Hrvatskoj i jednoj od najprometnijih luka na Mediteranu [176]. Splitsku
luku karakterizira intenzivan i raznolik promet koji obuhvaca trajekte, katamarane, kruzere
te velik broj manjih brodica i jedrilica. Upravo zbog prisutnosti brojnih malih i srednjih plo-
vila koja nisu obuhvaéena standardnim sustavima za nadzor i upravljanje [255, 256], splitska
luka predstavlja izazovno okruZenje za automatsko pracenje i analizu pomorskog prometa.
Za snimanje je koriStena nadzorna kamera Dahua DH-TPC-PT8620A-T [257] oprem-
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ljena 1/1.9” Sony CMOS senzorom rezolucije 1944 x 1092 piksela (=~ 2 MP). Kamera omo-
gucuje snimanje u slabim svjetlosnim uvjetima (0.001 lux u boji) te posjeduje objektiv sa Za-
riSnom duljinom 6—180 mm, kutom vidnog polja 59°—2.4° 1 30 x optickim zumom. Kamera
je postavljena na zgradi na ulazu u luku, ¢ime je omoguéeno sustavno pracenje cjelokupnog
dolaznog i odlaznog pomorskog prometa u luci Split. Preciznije, kamera se nalazi na koor-
dinatama 43°30'04” N i 16°25'48” E, te je montirana na visini od pribliZzno 9 m iznad razine
mora. Pozicija kamere u luci prikazana je na Slici 4.1 crvenim krugom s ikonom kamere. 1z

kruga se proteZu crvene linije koje pribliZzno oznacavaju stvarno vidno polje kamere.

Slika 4.1: Lokacija kamere u splitskoj luci. (Slika preuzeta iz [258], uz izmjene.)

4.2. Skup podataka za detekciju

Tocna i precizna detekcija plovila kljucna je za njihovo uspjesno praéenje, buduci da svaki
propust ili pogreska u ovom koraku izravno oteZava kasniju reidentifikaciju 1 naruSava kon-
zistentnost dodijeljenih identiteta kroz vrijeme. Kako bi se omoguéilo ucenje robusnih i uni-
verzalnih znacajki, SSMOT detekcijski podskup obuhvaca raznolike primjere plovila snim-
ljene u razli¢itim uvjetima, od razlicitih doba dana i razina osvjetljenja do promjenjivih oko-
lisnih uvjeta. Pri njegovoj izradi posebna je paznja posvelena izbjegavanju redundantnih i
uniformnih vizualnih prikaza iz susjednih okvira videozapisa. Umjesto toga, odabrani su re-
prezentativni i medusobno raznoliki primjeri, ¢ime se povecava varijabilnost skupa podataka
1 omogucuje razvoj detektora s boljim generalizacijskim sposobnostima, koji su prikladni za

primjenu u stvarnim, dinami¢nim uvjetima.
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4.2.1. Klasifikacija plovila

Prilikom definiranja kategorija plovila u SSMOT skupu podataka kao polaziste je koriStena
klasifikacija iz SPSCD skupa za detekciju koji je razvijen na Pomorskom fakultetu Sveuci-
liSta u Splitu uz sudjelovanje stru¢njaka sa Zavoda za nautiku [176]. U tom skupu podataka
kategorije su odredene prema tipu i duljini plovila, no u praksi duljinu plovila nije moguce
pouzdano razaznati iz samih snimaka. Stoga je u okviru SSMOT skupa naglasak stavljen na
vizualna obiljezja plovila koja su lako prepoznatljiva iz videozapisa.

Na temelju ciljeva i svrhe SSMOT skupa podataka, kao 1 specifi¢nosti prometa u split-
skoj luci, definirano je ukupno 11 kategorija plovila. Kategorije Medium Ferry i Large Ferry
iz izvornog SPSCD skupa podataka objedinjene su u jedinstvenu kategoriju Ferry zbog jako
slicnih vizualnih obiljeZja. Detaljan pregled kategorija s pripadaju¢im opisima i karakteris-
tinim vizualnim obiljeZjima dan je u Tablici 4.1, a na Slici 4.2 prikazani su reprezentativni

primjeri objekata iz svake kategorije.

Tablica 4.1: Pregled kategorija plovila koristenih u SSMOT detekcijskom podskupu.

ID Klasa Opis Vizualna obiljezja Tipi¢na namjena
. Vrlo malih dimenzija, ) )
Vrlo mala plovila L i . Rekreativno veslanje,
Small o izloZeno sjedenje, npr. o
0 namijenjena rekreaciji, ST jedrilicarska obuka,
Craft o ] . male trening jedrilice, . ]
sportu ili osnovnoj obuci . ) ) sportovi na vodi
Jjet ski, daske i kanui
Jednostavno plovilo o
L . o . Rekreativni ili
Small Manje privatne i tradicionalnog izgleda, ) .
o . . poluprofesionalni
1 Fishing ribarske brodice otvoren trup, skromna . .
) ) o ribolov, osobni
Boat skromnih performansi kabina i/ili tenda, .
. prijevoz lokalaca
vanbrodski motor
. N Obicno vise paluba,
Prijevoz ogranicenog ) ) e
Small . . . kabine s prozorima, Turisticki izleti,
broja putnika na kra¢im ) o
2 Passenger N L moguce otvorena linijski prijevoz,
) relacijama ili turistickim . g
Ship . paluba, ponekad jedra kratke kruZne ture
voznjama TS .
(turisticki jedrenjaci)
o o . Masivan radni trup, Industrijski ribolov,
Fishing Vecdi ribarski i ) . . .
3 ) . oprema za kocarenje, viSednevne ribarske
Trawler radni brodovi

visoki pramac

ekspedicije

Nastavlja se na sljedecoj stranici

58



Poglavlje 4. DIZAJN I IMPLEMENTACIJA SPLIT SHIP MOT SKUPA PODATAKA

Tablica 4.1 — Nastavak

Plovila na jedra koja

Jarbol(i), jedra,

Rekreacijsko jedrenje,

Sailing koriste vjetar za . .
4 » vitak trup srednje regate, charter,
Boat pogon uz moguci . - )
o do velike veli¢ine luksuzna plovidba
pomocéni motor
Nizak, izduZen i o L
. . Brza voZnja, glisiranje,
aerodinamican trup, . ) )
Speed Brza, sportska . adrenalinske aktivnosti,
5 ) otvorena ili o .
Craft motorna plovila hitne intervencije,

poluzatvorena kabina,

izraZzen sportski dizajn

brzi transferi

6 Motorboat

ViSenamjenska
motorna plovila

srednje veliCine

Stabilan, robustan trup,
zatvorena/poluzatvorena
kabina, udoban 1

funkcionalan dizajn

Obiteljski izleti,
svakodnevna plovidba,
sluZbene duZnosti

poput ophodnje

Luksuzne privatne,

Elegantna i moderna

Privatna 1 VIP charter

Pleasure ) silueta, viSekatno ) )
7 sportske i charter . ) plovidba, drustveni
Yacht . nadgrade ili otvoreni . .
jahte L dogadaji, rekreacija
sportski dizajn
o - ) Redovni linijski promet
Trajekti za Visepalubno plovilo )
8 Ferry o ) kopno-otok i medunaro-
putnike i vozila s rampama o
dne linije preko mora
High . . Moderan, aerodinamican L .
Brzi katamarani i L . ... Brzi prijevoz putnika
9  Speed . . dizajn, uska silueta, niski ; .
sli¢na plovila . na udaljene relacije
Craft trup, Cesto katamaran
Veliki brodovi za . oL
Large Visekatna paluba, KruZna turisticka

10  Passenger
Ship

prijevoz veéeg broja

putnika, opremljeni

za duZa putovanja

velik trup, brojni

prozori/kabine

putovanja (kruzeri),

prekooceanske linije

4.2.2. Proces prikupljanja i anotacije slika

Za potrebe izrade detekcijskog podskupa koriSteni su videozapisi snimljeni u razdoblju od

31. srpnjado 17. listopada 2023. godine, koje obuhvaca ljetne mjesece s povecanom promet-

nom aktivnoscéu u splitskoj luci, te dodatni zapisi iz svibnja 2024. godine. 1z njih je izdvojeno

ukupno 1040 slika. Dodatno je ukljucena i 2091 slika iz postojeéeg SPSCD skupa podataka,

koji sadrzi ukupno 19337 slika [176]. Pri odabiru slika iz SPSCD-a posebna je paznja po-

sveéena osiguravanju raznolikosti, buduéi da skup sadrZi velik broj medusobno vrlo sli¢nih
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(0) Small Craft

(1) Small Fishing Boat

(2) Small Passenger Ship

(3) Fishing Trawler

(4) Large Passenger Ship

(5) Sailing Boat

(6) Speed Craft

(7) Motorboat

(8) Pleasure Yacht

(9) Ferry

(10) High Speed Craft

Slika 4.2: Reprezentativni primjeri objekata pojedinih klasa plovila.

kadrova dobivenih iz uzastopnih okvira videozapisa. Ukljucivanjem SPSCD slika dobivena
je i dodatna sezonska raznolikost, jer one obuhvacaju i zimske mjesece koji nisu zastupljeni u
vlastitim snimkama. Postojeée anotacije odabranih SPSCD slika su prilagodene i korigirane,
buducdi da su originalni grani¢ni okviri bili nedovoljno precizni (Slika 4.3), a sva plovila od
interesa nisu uvijek bila oznacena (Slika 4.4). Takoder, ispravljene su uocene nekonzistent-
nosti u oznakama istog plovila na razli¢itim slikama.

Sve slike anotirane su koriste¢i Computer Vision Annotation Tool (CVAT) [259], stan-
dardni alat za oznaCavanje objekata na slikama i u videozapisima. KoriSten je YOLO format

oznaka [88], u kojem je svaki objekt na slici reprezentiran uredenom petorkom:

Xe Ve w h

(IDclass y

),

) 2 )
Wimg himg Wimg himg
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Izvorne
SPSCD
oznake

igil —~ . SPEED CRAFT 2458} SPEEQ?RAF{ 2150
Korigirane < - 131:5x39.7px 86.1x35.5px
oznake

Slika 4.3: Primjeri granicnih okvira koji obuhvacaju nepotrebne dijelove pozadine.

Izvorne SPSCD oznake Korigirane oznake
[ttt

Slika 4.4: Razlika u broju oznacenih plovila u izvornim SPSCD anotacijama i korigiranoj
verziji oznaka.

pri ¢emu 1D, predstavlja numericku oznaku klase kojoj objekt pripada, x. i y. koordinate
srediSta grani¢nog okvira, w i h njegovu Sirinu i visinu, a Wipg 1 hjpg Sirinu i visinu slike.
Oznacene slike podijeljene su na skup za treniranje i validaciju u omjeru 85:15. Od ukupno
3131 slike s 13680 objekata, na skup za treniranje otpada 2661 slika s 11539 objekata, dok
skup za validaciju ¢ini 470 slika s 2141 objektom.

Kako bi se dodatno povecala raznolikost 1 proSirio skup podataka za detekciju, primi-
jenjen je poluautomatizirani postupak. Na pripremljenim podacima treniran je YOLOI11m
detektor tijekom 100 epoha, s veli¢inom miniserije (engl. mini-batch) 8. 1z videozapisa na-
mijenjenih za treniranje izdvojeno je 10000 slu¢ajno odabranih okvira, na koje je primijenjen
prethodno istrenirani YOLO11m detektor iz epohe s najboljim performansama na skupu za
validaciju. Slike bez detektiranih objekata, kao i one s iskljucivo privezanim plovilima, uk-
lonjene su. Detekcije dobivene YOLO detektorom preostalih slika koriStene su kao pocetna
tocka za njihovu brzu i u€inkovitiju anotaciju u CVAT-u. Naposljetku je dobiven proSireni
skup podataka, znatno vece raznolikosti, s 8981 slikom i 45830 objekata, koji je takoder
podijeljen na skup za treniranje i validaciju u omjeru 85:15. Detaljan pregled broja slika i
instanci objekata po klasama, u inicijalnoj i u proSirenoj verziji skupa podataka, prikazan je
u Dodatku A.

Za potrebe konacne evaluacije, iz posebnih videozapisa koji nisu koriSteni za generiranje
skupa za treniranje, izdvojeno je i oznaceno 848 slika koje ¢ine nezavisni testni skup. Cje-
lokupni proces prikupljanja, filtriranja, anotacije i proSirenja skupa za detekciju prikazan je
na Slici 4.5, koja ilustrira klju¢ne korake u stvaranju SSMOT detekcijskog podskupa.
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CVAT skup za testiranje
videozapisi 848 eﬂ! | slike: 848
za testiranje ~ slika [

| objekti: 4607
Vlastiti videozapisi <
\ . . 040 CL, ; 'Iﬁ
videozapisi 1 - Ar i skupoviza
za treniranje slika slike: 3131 8515 } treniranje validaciju
A —_
> objekti: 13680 | slike: 2661 slike: 470
| objekti: 11539 objekti: 2141
S |
spscp — 2091 7T —
slika
treniraj
sluc¢ajan detektiraj
odabir objekte
1OQOO YOLO1Im
slika
filtriraj istrenirani
detektor
5848 slika s
YOLO detekcijama
|
PROSIRENI SKUP PODATAKA CVﬁT
==
- i
_skupoviza
treniranje validaciju 85:15  slike: 8979 o — slike: 5848
| - objekti: 45830 < ==k < objekti: 32150
slike: 7632 slike: 1347
| objekti: 39017 objekti: 6813 spoji

skupove

Slika 4.5: Vizualni prikaz procesa stvaranja SSMOT podskupa za detekciju.

4.2.3. Karakteristike detekcijskog podskupa

Radi boljeg razumijevanja SSMOT detekcijskog skupa podataka, u nastavku je provedena
analiza njegovih osnovnih karakteristika poput broja instanci objekata po klasama, broja
objekata po slici te dimenzija i1 povrSina grani¢nih okvira. Osim numeric¢kih pokazatelja,
ukljuceni su i ilustrativni primjeri slika koji prikazuju razliCite uvjete snimanja, promjene

osvjetljenja, djelomicne okluzije objekata i druge izazovne situacije.

Struktura SSMOT skupa podataka za detekciju

SSMOT skup podataka za detekciju sastoji se od ukupno 9827 slika u dvije rezolucije:
1920 x 1080 (9601 slika) 1 1280 x 720 (226 slika). Skup je podijeljen na podskup za treni-
ranje (7632 slika), validaciju (1347 slika) i testiranje (848 slika), pri cemu testni podskup
¢ini nezavisnu cjelinu jer slike potjecu iz videozapisa razlicitih od onih koriStenih za treni-
ranje i validaciju. Struktura SSMOT skupa za detekciju, s detaljnim prikazom broja slika
na kojima se javljaju objekti pojedine klase i broja instanci po klasama u pojedinim pod-

skupovima i sveukupno, dana je u Tablici 4.2. U retku "Ukupno" Tablice 4.2 u stupcima
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"Slike" naveden je ukupan broj slika u pojedinom skupu podataka !. Slika 4.6 dodatno ilus-
trira broj instanci po klasama u SSMOT skupu za detekciju, s naznacenim udjelom pojedinih

podskupova.

Tablica 4.2: Broj slika i instanci objekata po klasama u SSMOT detekcijskom podskupu.

Klasa Train Val Test Sveukupno
Slike Inst. | Slike Inst. | Slike Inst. || Slike Inst.
Small craft 517 1417 90 199 92 269 699 1885

Small Fishing Boat 1023 1101 168 186 83 85 || 1274 1372
Small Passenger Ship | 2755 3496 | 483 613 | 257 301 || 3495 4410

Fishing Trawler 3751 4098 | 652 714 | 572 589 || 4975 5401
Large Passenger Ship | 3360 4150 | 604 741 | 497 607 | 4461 5498
Sailing Boat 2139 3261 | 390 612 | 262 333 | 2791 4206
Speed Craft 3203 4501 | 540 769 | 410 567 | 4153 5837
Motorboat 1780 1902 | 320 343 | 186 210 | 2286 2455
Pleasure Yacht 1282 1383 | 225 243 | 136 151 || 1643 1777
Ferry 7088 12351 | 1242 2133 | 793 1315 || 9123 15799
High-speed craft 1274 1357 | 233 260 | 170 180 || 1677 1797
Ukupno | 7632 39017 | 1347 6813 | 848 4607 || 9827 50437

Vidljivo je da klasa Ferry znaajno dominira po broju instanci, Sto se moZe objasniti Ci-
njenicom da se trajekti Cesto pojavljuju privezani u luci te su stoga prisutni na velikom broju
slika. Sli¢an razlog djelomi¢no objasnjava i povecan broj instanci klasa Large Passenger
Ship i Fishing Trawler, buduci da se i oni nerijetko pojavljuju u kadru dok su privezani.
Klasa Speed Craft obuhvaca objekte koji, za razliku od prethodno navedenih, nisu privezani
vec se uglavnom pojavljuju u pokretu, no unatoc tome biljeZe velik broj instanci. To se mozZe
objasniti njihovom ¢estom prisutnoscu u stvarnim scenama te izraZenom intra-klasnom va-
rijabilnos¢u: ova klasa obuhvaca Sirok raspon modela koji se razlikuju po obliku, boji, vrsti

pogona i po materijalu izrade (npr. guma, plastika, aluminij).

Broj objekata po slici

Kako bi se dobio sveobuhvatan uvid u strukturu podataka, analize koje slijede provode se nad
cjelokupnim detekcijskim skupom, objedinjavanjem podskupova za treniranje, validaciju 1
testiranje.

Na Slici 4.7 prikazana je distribucija broja objekata po slici koriste¢i dvije komple-
mentarne vizualizacije. Gornji stupCasti dijagram (a) prikazuje apsolutan broj slika koje
sadrZe odredenu vrijednost broja objekata, uz dodatno naznacene relativne udjele. Donji pri-

kaz (b) predstavlja boxplot dijagram koji naglaSava centralne tendencije i raspon vrijednosti

'Vrijednost u retku "Ukupno" za stupce "Slike" ne mora odgovarati zbroju vrijednosti tog stupca po kla-
sama, budu¢i da se na istoj slici moZe nalaziti vise razlicitih objekata.
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Ferry 15799

Speed Craft 5837

Large Passenger Ship 5498

Fishing Trawler 5401

Small Passenger Ship 4410

Sailing Boat 4206
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Pleasure Yacht 1777
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Slika 4.6: Distribucija broja objekata pojedinih klasa u SSMOT skupu za detekciju.

u danim podacima. Analiza distribucije pokazuje da se najveci udio slika u SSMOT detekcij-
skom skupu podataka (57.7%) nalazi u rasponu od Cetiri do Sest objekata po slici. Nasuprot
tome, slike s manje od dva objekta te one s viSe od deset objekata javljaju se znatno rjede,
pri ¢emu njihov udio ne prelazi 5% ukupnog skupa. Slike s 10 objekata i viSe, njih 299
(3%), detektirane su kao skup outliera Sto ukazuje na to da se takvi primjeri pojavljuju rjede
i odstupaju od dominantnog obrasca distribucije. Cak 59.8% slika sadrZi 5 ili vi$e objekata,
a njih 22.3% 7 objekata ili viSe. U skupu podataka nema slika bez objekata; na svakoj slici
prisutan je barem jedan brod, bilo privezan u luci ili u pokretu.

Usporedba distribucije broja objekata po slici u SSMOT i SPSCD skupovima podataka
pokazuje na njihove znacajne razlike. VisSe od polovice slika (55.2%) SPSCD skupa podataka
sadrzi samo jedan objekt, dok dodatnih 11.7% ne sadrZi niti jedan objekt, Sto znac¢i da gotovo
dvije tre¢ine skupa (66.9%) obuhvaca slike s najviSe jednim objektom. Slike s dva broda
¢ine 17.7%, a s tri broda 10.7% ukupnog skupa. Udio slika sa sloZenijim scenama, tj. s
Cetiri ili viSe brodova, iznosi svega 4.6%, a tek je 26 slika s maksimalnim brojem objekata 7
(0.1%). Vazno je istaknuti da u SPSCD skupu podataka nisu oznacavana privezana plovila
unutar luke, ve¢ su uglavnom anotirana plovila u pokretu, a ona malo udaljenija Cesto su
izostavljena. Medutim, broj takvih neoznacenih plovila u SPSCD-u nije toliko velik da bi
bio jedini uzrok velike razlike u distribuciji broja objekata po slici SPSCD i SSMOT skupa
podataka. SSMOT se istiCe znatno ve¢im brojem objekata po slici te sloZenijim scenama,
Sto ga Cini pogodnijim za razvoj 1 evaluaciju detekcijskih modela u realnim uvjetima.

Za razliku od SPSCD skupa podataka, SSMOT skup obuhvaca i sva vidljiva plovila —
ona u pokretu, kao i ona koja su privezana. Bududi da vizualna obiljezja plovila ostaju

sli¢na neovisno o tome krecu li se ili miruju, njihovo selektivno oznacavanje ne utjeCe samo
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Slika 4.7: Distribucija broja objekata po slici u SSMOT detekcijskom skupu podataka
prikazana stupcastim dijagramom (a) i boxplotom (b).

na smanjenje prosjecnog broja objekata po slici, ve¢ moZe i zbunjivati detekcijske modele.

Naime, kada je plovilo sa sli¢nim vizualnim karakteristikama u jednoj slici oznaceno, a u

drugoj ne, otezava se proces ucenja jasnih i konzistentnih znacajki. Prednost SSMOT skupa

podataka je u dosljednom oznacavanju svih plovila, koje ¢ini osnovu za treniranje stabilnih

modela sposobnih za pouzdanu detekciju u prakti¢nim uvjetima.

Velicine i proporcije objekata

Analiza veliCina 1 proporcija oznaCenih objekata pruza vazan uvid u karakteristike samog

skupa podataka. PovrSine grani¢nih okvira otkrivaju koliki dio slike plovila obi¢no zauzi-

maju, dok omjer stranica granicnog okvira (engl. aspect ratio) daje uvid u karakteristicne

oblike plovila koja se javljaju. Analiza je provedena po klasama kako bi se lakSe uocili

specificni obrasci karakteristicni za pojedine kategorije plovila.
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Na Slici 4.8 prikazana je distribucija povrSina grani¢nih okvira po klasama brodova,
izrazenih kao postotak ukupne povrsine slike. Klase poput Small craft, Small Fishing Boat,
Speed Craft i Motorboat obuhvacaju male objekte koji obi¢no zauzimaju vrlo mali udio slike
(treéi kvartil Q3 za sve klase manji od 0.45%), Sto je i o¢ekivano buduci da se tu generalno
radi o manjim plovilima. S druge strane, kategorije koje sadrze veca plovila poput velikih
trajekata (Ferry) 1 kruzera (Large Passenger Ship) imaju jako Sirok raspon vrijednosti, od
primjera kada se javljaju kao dominantni objekti u kadru zauzimajuci iznimno velik dio slike
(preko 30%) do situacija kada su privezani ili se nalaze u daljini pa su im povrSine znatno
manje. Navedeno je ilustrirano primjerom slike (na Slici 4.8) na kojoj se nalaze dva grani¢na

okvira klase Ferry bitno razlicitih povrsina.
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Slika 4.8: Box-plot dijagrami povrsina granicnih okvira po klasama.

S druge strane, Slika 4.9 pruza pregled raspodjele omjera stranica (Sirine i visine) gra-
ni¢nih okvira po klasama plovila. MoZe se uociti da pojedine klase imaju karakteristicne
proporcije. Primjerice, grani¢ni okviri plovila klase Sailing Boat su uvijek vertikalno iz-
duzeni zbog karakteristicnog jarbola (Q3 = 0.39), dok kod klase Speed Craft prevladavaju
horizontalno izduZeni grani¢ni okviri (Q1 = 1.31). Vidljiva je 1 varijabilnost oblika grani¢nih
okvira unutar pojedinih klasa, koja proizlazi iz raznolikosti izgleda plovila u razlicitim po-
loZajima, kao i heterogenosti plovila unutar same kategorije. Primjerice, unutar klase Small
Craft prevladavaju male trening jedrilice ¢iji jarboli uzrokuju okomito izduZene okvire, dok
se istodobno pojavljuju 1 drugi tipovi plovila, poput kanua, kod kojih su grani¢ni okviri iz-
razito horizontalno izduzeni. Sli¢na raznolikost (Q1 = 0.66, Q3 = 1.25) prisutna je i u klasi
Small Passenger Ship, koja obuhvaca Sirok spektar putnickih brodova, od manjih plovila do
vecih turistickih jedrenjaka i brodova namijenjenih kra¢im kruZnim turama. Kod klasa poput

Ferry, Large Passenger Ship i Fishing Trawler uCestalo se pojavljuju primjerci privezani uz
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obalu, zbog Cega je prisutan znatan broj grani¢nih okvira s omjerom stranica manjim od 1.
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Slika 4.9: Box-plot dijagram omjera Sirine i visine granicnih okvira po klasama.

Velika raznolikost veli¢ina objekata, kako medu klasama tako i unutar iste klase, zajedno
s varijabilno$¢u njihovih proporcija, ¢ini skup podataka reprezentativnijim, ali istodobno
predstavlja i veci izazov za detekcijske modele koji moraju jednako pouzdano prepoznavati
vrlo male i izrazito velike objekte razlicitih oblika.

Vizualna raznolikost i izazovni scenariji

Kako bi se dodatno prikazala raznolikost i slozenost SSMOT skupa podataka za detekciju,
u nastavku su prikazani reprezentativni primjeri slika koje obuhvacaju razli¢ite vremenske
1 morske uvjete, razine osvijetljenosti te situacije djelomicne zaklonjenosti i medusobnog
mimoilaZenja brodova. UvrStavanjem ovakvih primjera osigurava se da detekcijski model ne
uci iskljucivo iz idealnih situacija, nego i iz sloZenih scenarija. Time se razvija sposobnost
generalizacije detekcijskog modela i njegova otpornost na razliite uvjete i okolnosti koje
odstupaju od uobicajenih, poput maglovita vremena ili djelomi¢ne zaklonjenosti plovila koje
je potrebno detektirati.

Primjeri prikazani na Slici 4.10 ukazuju na to da skup podataka SSMOT obuhvaca raz-
nolike vremenske i okoliSne uvjete. UkljuCene su scene snimljene pri sun¢anom i oblaénom

vremenu, kao i u uvjetima magle i kiSe, uz razlicite razine osvijetljenosti — od ranih jutarnjih
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sati, preko dnevnih i sumracnih scena, do vecernjih uvjeta. Na pojedinim primjerima uocljivi

su i valovi te odsjaji sunceve svjetlosti na povrSini mora.

(3505 2025 192592 B

Slika 4.10: Primjeri razlicitih uvjeta i razina osvijetljenosti u SSMOT skupu podataka za
detekciju.

Na Slici 4.11 prikazane su situacije djelomicne zaklonjenosti i medusobnog mimoilaze-
nja plovila, koje dodatno doprinose sloZenosti skupa podataka. Ove raznolikosti ¢ine skup
podataka zahtjevnijim, ali istovremeno omogucuju treniranje detekcijskih modela vece ro-

busnosti koji ¢e biti pouzdani i u stvarnim uvjetima primjene.

021082022 141133 Wed - — - 0 95 58)lon

-

Slika 4.11: Primjeri sloZenijih scena s djelomicno zaklonjenim plovilima koja se mimoilaze.

4.3. RelD skup podataka

Reidentifikacija plovila ¢ini osnovu naprednih sustava za pradenje, buduci da omogucava
prepoznavanje i povezivanje istog objekta kroz vremenski razdvojene okvire videozapisa,
¢ak 1 u situacijama privremenog izostanka detekcije uslijed pogreske detektora ili okluzije.
Zarazliku od skupa za detekciju, koji se sastoji od pojedinacnih okvira videozapisa s oznace-
nim lokacijama i klasama plovila, skup podataka za reidentifikaciju sadrzi slike istih plovila

prikazanih u razli¢itim okolnostima - pri promjenama poloZaja, udaljenosti od kamere, uvjeta
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osvjetljenja i snimanja. Ovakva struktura podataka omogucuje ucenje diskriminativnih vizu-
alnih obiljezja plovila, koja ostaju relativno nepromijenjena unatoC varijacijama u njihovom

izgledu i vanjskim okolnostima snimanja.

4.3.1. Osnovne karakteristike

SSMOT skup podataka za reidentifikaciju, razvijen za specifican problem praéenja plovila u
splitskoj luci, obuhvaca ukupno 281 razlicito plovilo (identitet). Za svako plovilo prikup-
ljeno je najmanje osam slika koje ga prikazuju u razli¢itim poloZajima i/ili su snimljene u
razliitim vremenskim razdobljima. Kod nekih plovila, poput onih na redovnim trajektnim
i turistickim linijama, bilo je moguce prikupiti uzorke snimljene u razli¢itim vremenskim
razdobljima i pod razliitim uvjetima. Nasuprot tome, kod manjih privatnih brodica takav
pristup nije bio uvijek izvediv, pa su varijacije uglavnom ostvarene primjerima plovila u
razlicitim poloZajima. Slika 4.12 prikazuje uzorke slika Sest razlicitih identiteta iz SSMOT

skupa za reidentifikaciju.

o
N

(d)

(e)

(f)

Slika 4.12: Primjeri slika Sest identiteta iz SSMOT RelD skupa podataka.

Na Slici 4.13 prikazan je kruZni dijagram koji ilustrira raspodjelu pojedinih klasa plovila
u SSMOT skupu podataka za reidentifikaciju. Nasuprot detekcijskom skupu podataka, u
kojem prevladavaju klase poput Ferry, Cija je visoka zastupljenost rezultat same strukture
prometa u splitskoj luci - uCestalog prometovanja redovnih trajektnih linija te cestog boravka

trajekata privezanih u luci - u RelD skupu podataka zastupljenije su klase poput Speed Crafft,
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Small Passenger Ship i Motorboat, koje karakterizira izraZenija unutar-klasna varijabilnost.
Veca zastupljenost takvih klasa u RelD skupu podataka je iznimno vaZna jer omoguduje
modelu da razlikuje pojedinacna plovila iste kategorije koja dijele slicna vizualna obiljezja,

Sto predstavlja temelj za pouzdano oCuvanje identiteta plovila tijekom pracenja.

4%

o
20% 2%

9%
9%
13%

Slika 4.13: Kruzni dijagram udjela pojedinih klasa u identitetima SSMOT RelD skupa
podataka.

Klase
speed craft
small passenger ship
motorboat
sailing boat
pleasure yacht
small fishing boat
small craft
high speed craft
large passenger
ferry
fishing trawler

Od ukupno 281 identiteta u RelD skupu podataka, njih 61 je izdvojeno za testiranje,
dok je preostalih 220 namijenjeno treniranju reidentifikacijskih modela. U oba podskupa

zastupljene su sve klase plovila, $to je ilustrirano na Slici 4.14.

Distribucija ID-eva po klasama

speed craft - 11 57

small passenger | 10 49
ship
motorboat - 8 36

sailing boat 7 30

pleasure yacht 4 6 26

small fishing | 5 26
boat

small craft 1 418
high speed craft 4 o 12
large passenger - 512

ferry 2 10

Train

fishing trawler 2 5
Test

0 10 20 30 40 50
Broj razlicitih ID-eva

Slika 4.14: Distribucija broja identiteta SSMOT RelD skupa podataka po klasama s
podjelom na skup za treniranje i testiranje.
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4.3.2. Struktura RelD skupa podataka

SSMOT skup podataka za reidentifikaciju podijeljen je na tri particije standardne za RelD
skupove podataka [260, 261, 262, 263], a to su: skup za ucenje, skup upita i galerija.

Skup za ucenje (engl. train set) Koristi se za treniranje ReID modela i sadrzi slike
identiteta namijenjene iskljucivo procesu ucenja. S druge strane, za evaluaciju performansi
dobivenih modela, koriste se skup upita i galerija. Skup upita (engl. guery set) najcesée
se sastoji od jedne do dvije slike za svaki testni identitet. Cilj ReID modela je za svaku
sliku iz skupa upita pronaci odgovarajuce slike istog identiteta unutar galerije. Galerija
(engl. gallery) predstavlja pretrazivacki prostor slika u kojem se traze pozitivni primjeri za
zadane upite. Ona sadrzi veéi broj slika svakog testnog identiteta, kao i distraktore - vizualno
sli¢ne primjere identiteta koji se ne nalaze medu upitima. Dodavanjem distraktora u galeriju
modelima se dodatno otezava zadatak reidentifikacije, a sama procjena performansi modela
postaje realisti¢nija i pouzdanija jer je bliza stvarnim uvjetima primjene.

SSMOT RelD skup podataka konkretno sadrzi: 1) 5227 slika u skupu za treniranje -
minimalno osam primjera za svaki od identiteta namijenjenih za ucenje RelD modela; 2)
122 slike u skupu upita - po dvije slike za svaki testni identitet; 3) 488 slika u galeriji -
Sest pozitivnih primjera 1 dva distraktora za svaki testni identitet. U skupu za treniranje
broj primjera po identitetu varira: od minimalnih 8 do maksimalnih 128, pri ¢emu veéina
identiteta (54%) ima izmedu 8 i 20 slika. Distribucija broja primjera po identitetu u RelD

skupu za treniranje ilustrirana je na Slici 4.15.

Histogram distribucije broja slika po identitetu
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Slika 4.15: Histogram distribucije broja slika po identitetu u RelD skupu za treniranje.

KoriStenje veceg broja upita po identitetu u evaluaciji reidentifikacijskog modela moZze
doprinijeti pouzdanijoj procjeni njegovih performansi. Odabirom dviju slika po testnom

identitetu u skupu upita evaluacija postaje pouzdanija nego kad se koristi samo jedno, a
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pritom se ne uvodi znacajno dodatno opterecenje. Na taj je na¢in moguce provjeriti koliko je
model stabilan u pronalasku istog identiteta kada se koriste njegovi razliciti vizualni prikazi.
Upravo takav pristup, s dvjema slikama po identitetu, koristi se i u [263, 264]. Kako bi se
ReID modelima dodatno oteZao postupak pretrage galerije s ciljem pronalaska pozitivnih
primjera, za svaki testni identitet u galeriju su ukljuCena i1 dva distraktora koja vizualno
nalikuju slikama upita. Na Slici 4.16 prikazani su primjeri distraktora za tri testna identiteta.

Uz osnovnu galeriju, kao "tezi" scenarij, promatrana je i proSirena galerija s 1138 slika,
koja je zbog ogranicenog broja dostupnih identiteta proSirena dodavanjem slika iz skupa za
ucenje te dodatnih distraktora. Iako idealno rjeSenje podrazumijeva koriStenje primjera iden-
titeta koji nisu prisutni ni u skupu za ucenje ni u skupu za testiranje, ukljucivanje uzoraka
iz skupa za ucenje ipak je prihvatljivo jer ne dolazi do preklapanja s testnim identitetima, a
istovremeno se povecava raznolikost i veli¢ina galerije. Na taj naCin evaluacija postaje zah-
tjevnija i realistiCnija, buduéi da bolje odrazava uvjete u kojima je potrebno pronaci traZeni

identitet u znatno veCem prostoru pretraZivanja.

GALERIJA

UPITI POZITIVNI PRIMJERI DISTRAKTORI

Slika 4.16: Primjeri: upit - pozitivni primjeri + distraktori.
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4.4. Skup videozapisa za pracenje plovila

Skup videozapisa zavrs$na je i kljuCna komponenta SSMOT skupa podataka, namijenjena
istrazivanju i evaluaciji metoda za pracenje plovila u stvarnim pomorskim uvjetima. Za raz-
liku od stati¢nih slika koje su koriStene u detekcijskom podskupu, videozapisi omoguéuju
analizu vremenske povezanosti izmedu uzastopnih okvira te pracenje dinamickih promjena
u kretanju plovila kroz vrijeme. Osim samog kretanja, videozapisima se mogu proucavati i
medusobni prostorni odnosi plovila u vidnom polju, poput njihovog priblizavanja, preklapa-

nja i privremene zaklonjenosti, odnosno pojave okluzije.

4.4.1. Nacin oznacavanja podataka

Svi videozapisi unutar SSMOT skupa podataka anotirani su koriStenjem alata Computer Vi-
sion Annotation Tool (CVAT) [259]. Proces anotiranja obavljen je ru¢no, uz naknadnu pro-
vjeru i korekciju, kako bi se osigurala to¢nost 1 konzistentnost anotacija. KoriSten je MOT
1.1. (Multiple Object Tracking) format oznaka, koji omoguéuje pracenje svih instanci plovila
kroz uzastopne okvire videozapisa.

U odnosu na detekcijski podskup, u kojem se svaka slika oznacava zasebno, MOT ano-
tacije zahtijevaju oCuvanje identiteta svih objekata kroz okvire videozapisa. Svakom plovilu
pri prvom pojavljivanju dodjeljuje se jedinstveni identifikator (ID) koji ostaje nepromije-
njen tijekom cijelog razdoblja njegova pracenja, ukljucujuéi i vrijeme djelomicne ili potpune
okluzije. Takav pristup omogucuje kontinuirano i dosljedno pracenje objekata kroz cijeli vi-
deozapis. Kategorije plovila u MOT skupu uskladene su s onima koriStenima u detekcijskom
podskupu, kako bi se osigurala konzistentnost izmedu razlicitih dijelova SSMOT skupa po-
dataka. Sve klase koriste iste nazive 1 oznake kao u detekcijskom dijelu (0 - Small Craft, 1 -
Small Fishing Boat, 2 - Small Passenger Ship, itd.), ¢ime je omoguéena njihova zajednicka i
medusobno kompatibilna uporaba.

Svaki videozapis ima odgovarajucu tekstualnu datoteku s anotacijama u sljedecem for-

matu:
frame, id, x, y, width, height, confidence, class, visibility

gdje svaki redak predstavlja jednu instancu plovila u odredenom okviru videozapisa. Para-
metar frame oznacava redni broj okvira u kojem se plovilo pojavljuje, dok id predstavlja
njegov jedinstveni identifikator koji ostaje nepromijenjen kroz sve okvire u kojima je plovilo
prisutno. Koordinate x i1 y definiraju poloZaj gornjeg lijevog kuta grani¢nog okvira plovila, a
width i height njegovu Sirinu i visinu izrazenu u pikselima. Vrijednost confidence ozna-
Cava razinu pouzdanosti detekcije (u ground-truth oznakama obicno postavljena na 1), dok
se vrijednost class odnosi na pripadajucu kategoriju plovila. Zadnji parametar visibility

koristi se kao binarna oznaka vidljivosti, pri ¢emu vrijednost 0 oznacava potpuno zaklonjen,
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a vrijednost 1 vidljiv objekt.

Primjer isjeCka iz anotacijske datoteke prikazan je na Slici 4.17. Prikazani redci odgo-
varaju zapisima o tri razli¢ita plovila unutar prva dva okvira videozapisa, gdje svaka linija
sadrzi njihove prostorne koordinate, dimenzije grani¢nih okvira, te informacije o pripadaju-

¢oj klasi i trenutnoj vidljivosti objekta.

1 1,1,160.6,165.15,115.70,84.13,1,10,1

» 1,2,598.62,145.75,276.77,124.46,1,10,1
5 1,3,1052.76,223.45,10.60,6.30,1,8,1

. 2,1,160.6,165.15,115.70,84.13,1,10, 1

5 2,2,599.15,145.77,276.61,124.45,1,10,1
6 2,3,1052.84,223.45,10.60,6.30,1,8,0

Slika 4.17: Primjer formata MOT 1.1 oznaka preuzetih iz CVAT-a.

4.4.2. Opce karakteristike SSMOT videozapisa

SSMOT skup za pracenje obuhvaéa videozapise snimljene u razli¢itim uvjetima osvjetljenja
1 vidljivosti, tijekom razli¢itih doba dana. U njemu su zastupljene jednostavnije scene s
manjim brojem plovila u vidnom polju, kao i sloZenije sekvence s pojaCanim prometom
te medusobnim preklapanjima i mimoilaZenjima plovila. Primjeri reprezentativnih kadrova
SSMOT videozapisa prikazani su na Slici 4.18. Kadrovi razliCitih razina osvjetljenja i broja
objekata prikazani su u prvom retku na Slici 4.18, dok su u drugom retku ilustrirane situacije
medusobnog mimoilaZzenja i preklapanja plovila. Skup takoder obuhvaca izazovne slucajeve
u kojima je potrebno istodobno pratiti viSe vizualno sli¢nih objekata (primjer na Slici 4.19),

kao 1 situacije djelomicnih i potpunih okluzija te ulazaka i izlazaka objekata iz vidnog polja.

SSMOT 17 e

Slika 4.18: Primjeri scena iz SSMOT skupa videozapisa.

Skup ukljucuje ukupno 18 videozapisa razlicitog trajanja, snimljenih u stvarnim obalnim
uvjetima u kolovozu i rujnu 2023. godine pomocu nadzorne kamere opisane u potpoglav-
lju 4.1. Vecina videozapisa u skupu ima frekvenciju od 25 okvira u sekundi (FPS), dok se
manji broj biljezi pri 10 ili 30 FPS. Ukupno trajanje videozapisa iznosi 9 minuta 1 34 se-

kunde, $to odgovara 12946 pojedinacnih okvira. U njima se javlja 149 razlicitih plovila, s
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’ -

Slika 4.19: Primjer videozapisa (SSMOT_12) u kojem je potrebno istovremeno pratiti veci
broj vizualno slicnih plovila koja se medusobno preklapaju i mimoilaze.

ukupno 91006 grani¢nih okvira. Videozapisi su pohranjeni u .mp4 formatu s razluc¢ivoscu
1280 x 720 piksela. Detaljan pregled karakteristika pojedinih videozapisa prikazan je u Ta-
blici 4.3. Tablica prikazuje osnovne tehnicke specifikacije svakog videozapisa — njegovu
duljinu, broj okvira i1 anotiranih putanja plovila, kao 1 ukupan broj grani¢nih okvira. Stupac
Gustoca prikazuje prosjeCan broj oznacCenih plovila po okviru videozapisa, Cime se procje-
njuje razina sloZenosti pojedine scene. Vrijednost u retku Ukupno predstavlja prosjecnu
gustocu izracunatu za Citav skup, odnosno omjer ukupnog broja grani¢nih okvira i ukupnog

broja okvira svih videozapisa.

Tablica 4.3: Osnovne karakteristike videozapisa u SSMOT skupu za pracenje.

Naziv \ FPS Brojokvira Duljina Putanje Granicni okviri Gustoca
SSMOT_1 25 287 0:11 5 1435 5.0
SSMOT_2 30 604 0:20 9 4415 7.3
SSMOT_3 25 1037 0:41 7 7049 6.8
SSMOT _4 25 370 0:14 8 2850 7.7
SSMOT_5 25 433 0:17 7 2901 6.7
SSMOT_6 25 856 0:34 11 7990 9.3
SSMOT_7 25 451 0:18 4 1804 4.0
SSMOT_8 25 1697 1:07 11 10494 6.2
SSMOT_9 25 922 0:36 8 6357 6.9
SSMOT_10 | 25 836 0:33 12 6571 7.9
SSMOT_11 | 25 277 0:11 12 3185 11.5
SSMOT_12 | 25 928 0:37 10 6930 7.5
SSMOT_13 | 10 646 1:04 7 3647 5.6
SSMOT_14 | 10 598 0:59 9 5072 8.5
SSMOT_15 | 25 585 0:23 7 4095 7.0
SSMOT_16 | 25 940 0:37 10 8742 9.3
SSMOT_17 | 30 941 0:31 4 3764 4.0
SSMOT_18 | 25 538 0:21 8 3705 6.9
Ukupno \ 12946 9:34 149 91006 7.0

Videozapisi obuhvacaju svih jedanaest kategorija plovila, pri ¢emu je raspodjela putanja

po kategorijama prikazana na Slici 4.20. Detaljni podaci o broju plovila svake kategorije
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u pojedinim videozapisima dostupni su u Dodatku B. Iako su pojedine klase, poput Small
Fishing Boat, slabije zastupljene, to ne predstavlja znacajno ogranienje ovog skupa poda-
taka, Cija je osnovna svrha ispitati konzistentnost pracenja i zadrZavanja identiteta objekata
kroz videozapis. Sama klasifikacija plovila temelji se na predvidanjima detektora, a evalu-
acija performansi detektora provodi se na zasebno pripremljenom testnom podskupu SSMOT

skupa za detekciju.

13 (8.7%) 10 (6.7%)
2 (1.3%)
9 (6.0%)—|
,—31 (20.8%)
13 (8.7%)—
14 (9.4%)’ .‘—5 (3.4%)
L 11 (7.4%)
13 (8.7%)—
28 (18.8%)
mmm Small Craft B |arge Passenger Ship mmm Pleasure Yacht
Small Fishing Boat Sailing Boat Ferry
Small Passenger Ship mmm Speed Craft mmm High-speed Craft
Fishing Trawler Motorboat

Slika 4.20: Zastupljenost pojedinih kategorija plovila u putanjama SSMOT videozapisa.

4.4.3. OKkluzije u videozapisima

Okluzije plovila u videozapisima mogu biti djelomic¢ne ili potpune. Djelomicne okluzije
javljaju se kada je plovilo samo dijelom prekriveno drugim plovilom ili elementom scene,
dok potpune okluzije oznacavaju situacije u kojima je plovilo u potpunosti zaklonjeno odre-
deni broj uzastopnih okvira. U daljnjem tekstu pojam okluzije odnosi se upravo na situ-
acije potpune zaklonjenosti u kojima plovilo privremeno nije vidljivo u kadru te se potom
se ponovno pojavljuje. Takvi su primjeri osobito vazni za procjenu sposobnosti algoritama
pracenja da zadrze identitet objekta unato¢ privremenom prekidu vidljivosti. Stoga je pri
konstrukciji SSMOT skupa videozapisa posebna paznja posveéena ukljucivanju dovoljnog
broja primjera potpunih okluzija, kako bi se osigurali uvjeti za realniju procjenu robusnosti
algoritma u sloZzenim scenarijama zaklonjenosti.

Okluzije se dodatno mogu razvrstati na kratkotrajne i dugotrajne, ovisno o trajanju raz-

doblja u kojem je objekt zaklonjen. Kratkotrajne okluzije obi¢no traju svega nekoliko uzas-
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topnih okvira i predstavljaju manji izazov za algoritme pracenja, dok dugotrajne okluzije,
koje mogu potrajati i nekoliko sekundi, znacajno povecavaju rizik od gubitka identiteta
objekta i pogresne reasocijacije nakon ponovnog pojavljivanja U postojecoj literaturi ne
postoji kriterij koji jednoznacno definira granicu izmedu kratkotrajnih i dugotrajnih oklu-
zija. Predlozeni pragovi znacajno se razlikuju medu autorima - od pragova od 20 [25] 1 30
[265] okvira, do vremenskih pragova od 2 s [23]1 5 s [24].

U okviru SSMOT skupa videozapisa evidentirana je ukupno 31 okluzija. Histogram
njihovog trajanja prikazan je na Slici 4.21. Buduci da skup obuhvaca videozapise razlicitih
frekvencija okvira u sekundi (FPS), trajanje okluzija izraZzeno je u sekundama. Od ukupnog
broja, sedam okluzija traje do 1 s, pri &emu najkraca traje 0.4 s (10 okvira). Cetrnaest okluzija
(45.16%) traje dulje od 5 s, dok su tri dulje od 20 s, pri ¢emu najdulja traje 29.05 s. Detaljan
popis svih zabiljeZenih okluzija, s pripadajué¢im informacijama o videozapisu, ID-u objekta,
kategoriji, pocetnom i zavrSnom okviru okluzije te njenom trajanju u okvirima i sekundama,
nalazi se u Dodatku B.

kratke (=2 s)
srednje duge (2-8 s)
duge (>85s)

N
T

Broj okluzija

w
T

12 14 16 18 20 22 24 26 28 30
Trajanje [s]

Slika 4.21: Histogram trajanja potpunih okluzija u SSMOT videozapisima.

Okluzije se u ovom radu, s obzirom na trajanje izraZzeno u sekundama, dijele na kratke,
srednje duge i duge. Kratkima se smatraju okluzije koje traju najvise 2 s (< 2 s), srednje
dugima one Cije je trajanje dulje od 2 s, ali ne prelazi 8 s (> 2 s, < 8 s), dok se dugima
smatraju okluzije dulje od 8 s (> 8 s). U skladu s definiranom klasifikacijom, u SSMOT
skupu videozapisa zabiljeZeno je 13 (41.9%) kratkih, 8 (25.8%) srednje dugih i 10 (32.3%)
dugih okluzija. Slika 4.22 prikazuje po jedan primjer svake kategorije okluzije: na vrhu je
prikazana kratka okluzija iz SSMOT_16 videozapisa koja traje tek 0.4 s, u sredini se nalazi
srednje duga okluzija u trajanju od 2.08 s iz SSMOT_5 videozapisa, a na dnu duga okluzija
iz SSMOT _14 videozapisa u kojoj trajekt zaklanja jedrilicu 29.05 s.
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Slika 4.22: Primjeri okluzija razlicitih trajanja iz SSMOT skupa podataka.
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Detekcija plovila kljucan je korak modernih algoritama za pracenje i nadzor pomorskog
prometa, koji znacajno utjeCe na njihove konacne performanse. Zbog svojih ogranicenja,
tradicionalni pristupi detekciji objekata temeljeni na pomi¢nim prozorima i ru¢no dizajni-
ranim znacajkama poput HOG [266], SIFT [267], SURF [268] i Haarovih znacajki [269],
gotovo su u potpunosti zamijenjeni detektorima dubokog ucenja, koji zahvaljujuci automat-
skom ucenju robusnih znacajki i superiornim performansama danas predstavljaju standard
[270, 271, 73]. Medu detektorima temeljenima na dubokom ucenju posebno se istiCu detek-
tori iz YOLO familije [88, 272, 273, 274, 275, 276, 277, 278, 279, 280], koji su zahvaljuju¢i
kombinaciji brzine i to¢nosti postali vode¢im odabirom u mnogim aplikacijama za detekciju
objekata u stvarnom vremenu.

U ovom poglavlju opisan je model razvijen za automatsku detekciju plovila, koji se teme-
1ji na YOLO11 arhitekturi. U nastavku je prikazan postupak razvoja, treniranja i evaluacije
YOLOI1 detektora za prepoznavanje plovila. Prvo je opisana sama arhitektura YOLO mo-
dela, s naglaskom na prednosti koriStene verzije. Zatim je detaljno opisan proces treniranja
modela, ukljucujuéi pripremu podataka, specifikacije okruzenja na kojem se model trenirao,
kao 1 vrijednosti koriStenih hiperparametara. Na kraju su prikazani i analizirani rezultati
evaluacije dobivenog modela, pri ¢emu su koriStene standardne metrike poput preciznosti,

odziva i srednje prosjecne preciznosti (mAP).

5.1. YOLO detektor

Joseph Redmon i suradnici [88] predstavili su 2016. godine prvu verziju ""You Only Look
Once'"' (YOLO) algoritma, koja je revolucionirala pristup detekciji objekata koriste¢i samo
jedan prolaz kroz neuronsku mreZu za cijeli proces detekcije. YOLO dijeli ulaznu sliku na
mrezu od S x § Celija, pri ¢emu se za svaku Celiju predvida B grani¢nih okvira i C vjerojat-
nosti klasa. Za svaki grani¢ni okvir, model predvida koordinate sredista (x,y), $irinu i visinu
(w,h) te sigurnost (p.) da okvir sadrzi objekt. Izlaz mreZe je S X S x (B-5+ C) volumen, a
arhitektura, inspirirana GoogleLeNet-om [281], prikazana je na Slici 5.1.

Prednosti predlozenog YOLO detektora ukljucuju jednostavnu implementaciju, brzu de-
tekciju u stvarnom vremenu, implicitno kodiranje kontekstualnih i vizualnih informacija ana-

lizom cijele slike te end-fo-end optimizaciju. Medutim, ovakav YOLO detektor ima odre-
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Slika 5.1: Arhitektura originalnog YOLO detektora: S =7, B="2, C = 20.
(Slika preuzeta iz [88], uz izmjene.)

dena ogranicenja u odnosu na druge state-of-the-art detektore: manje je precizan u lokaliza-
ciji objekata, ima poteSkoce s detekcijom manjih i blisko grupiranih objekata, a svaka Celija
moze predvidjeti samo dva grani¢na okvira (B = 2) i jednu klasu.

YOLOVv2 [272], takoder poznat kao YOLO9000, proSiruje moguénosti detekcije obje-
kata na preko 9000 razli¢itih klasa uz povecanu rezoluciju ulaznih slika. Model uvodi re-
ferentne okvire (engl. anchor boxes), unaprijed definirane pravokutne regije razli¢itih ve-
licina i omjera, koje sluZe kao polazna to¢ka za predvidanje granic¢nih okvira, a njihov se
odabir optimizira primjenom K-Means [282] algoritma. Takoder primjenjuje normalizaciju
mini-serija (engl. batch normalization) [181] i Darknet-19 okosnicu baziranu na VGG [209]
arhitekturi. Treca verzija YOLO detektora, YOLOv3 [273], unaprjeduje model koriStenjem
Darknet-53 okosnice s rezidualnim blokovima [180] te uvodi koncept sli¢an piramidalnoj
mreZi znacajki [283] za poboljSanu detekciju objekata razlicitih veli¢ina.

YOLOV3 posljednja je verzija YOLO detektora koju je razvio originalni autor YOLO-a,
Joseph Redmon. U meduvremenu, predstavljene su verzije YOLO detektora od YOLOv4
[274] do najrecentnije verzije YOLOvV12 [284], te verzije poput PP-YOLO [278], YOLOR
[279], YOLOX [280] i YOLO-NAS [285] detektora. Verzije YOLO algoritma, od YOLOv1
do YOLOv4, koriste DarkNet okvir otvorenog koda, koji je razvijen u programskom jeziku
C i CUDA-i. Verzija YOLOVS [275], koju je razvio tim iz tvrtke Ultralytics, prva je verzija
YOLO-a koja je umjesto u DarkNet okviru implementirana u PyTorch-u [286]. Budu¢i da je
YOLOVS objavljen samo kao GitHub repozitorij, a ne kao recenzirano istraZivanje, postojale
su sumnje u autenti¢nost i ucinkovitost tog modela. Iako odgovarajudi istrazivacki rad nije
bio dostupan, ¢injenica da je YOLOVS kasnije primijenjen u brojnim aplikacijama s uc¢inko-
vitim rezultatima pocela je jacati kredibilitet modela [287]. U 2023. godini, isti tim je izdao
poboljsani YOLO detektor nazvan YOLOVS [276], a 2024. godine i verziju YOLO11 [288].
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5.1.1. YOLO11

Svaka verzija YOLO serije postavila je nove standarde u detekciji objekata, uvodedi kljucne
arhitektonske inovacije koje unaprjeduju performanse detektora u razli¢itim zadacima racu-
nalnog vida [159]. Posljednja verzija razvijena od strane Ultralytics tima, YOLO11 [288],
donosi poboljSanja u vidu ekstrakcije znacajki i balansa izmedu to¢nosti i brzine izvodenja.
Detaljna arhitektura YOLO11 detektora prikazana je na Slici 5.2.
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Slika 5.2: Arhitektura YOLOI11 detektora. (Slika preuzeta iz [289].)

YOLOI11 detektor sastoji se od tri osnovne komponente: okosnice (engl. backbone),
vrata (engl. neck) i glave (engl. head). Okosnica detektora zaduZena je za izdvajanje re-
levantnih znacajki razliCitih skala iz dane ulazne slike. Tako dobivene znacajke se potom
agregiraju i obogacuju u medusloju, odnosno vratu detektora, kako bi se povecala sposob-

nost modela da prepoznaje objekte razlicitih veli¢ina. Na temelju agregiranih znacajki glava
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detektora, putem triju paralelnih grana, generira predvidanja koordinata grani¢nih okvira te
vjerojatnosti njihove pripadnosti pojedinim klasama, zajedno s odgovaraju¢im pouzdanos-
tima (engl. confidence score).

Temelj arhitekture YOLO11 detektora ¢ine CBS (Conv-BN-SiLU) blokovi koji objedi-
njuju konvoluciju (Conv), normalizaciju mini-serija (engl. Batch Normalization, BN) 1 SILU
(engl. Sigmoid Linear Unit) aktivacijsku funkciju [290]. Ovi blokovi osiguravaju izdvajanje
relevantnih znacajki, stabilizaciju protoka podataka i poboljSane performanse modela, ge-
nerirajuéi rafinirane mape znacajki potrebne za predvidanje grani¢nih okvira i klasifikaciju
objekata [291]. C2f blok, koriSten u YOLOvS detektoru, u YOLOI11 je zamijenjen C3k2 blo-
kom. Ovaj blok koristi dvije manje konvolucije (s jezgrom veli¢ine 2) umjesto jedne velike,
¢ime se postiZe brza obrada uz zadrZavanje visoke to¢nosti modela [289]. Nadalje, YOLO11
zadrzava SPPF komponentu (Spatial Pyramid Pooling - Fast) prethodnih verzija, uz dodatak
modula prostorne paznje C2PSA (Convolutional block with Parallel Spatial Attention), koji
modelu omogucuje preciznije usmjeravanje paznje na kljucne regije slike, ¢cime se dodatno
poboljSava ekstrakcija znacajki [291]. Ove arhitektonske nadogradnje omogucuju YOLO11
precizniju detekciju sloZenih detalja na slikama, posebno u zahtjevnim scenarijima s malim
ili djelomic¢no zaklonjenim objektima [159].

Dostupno je viSe razlicitih inacica YOLO11 detektora koje su optimizirane za razlicite
potrebe u pogledu brzine, veli¢ine modela i to¢nosti. Najmanja varijanta, u pogledu broja
parametara i racunalne slozenosti, YOLO11n, dizajnirana je za rad u stvarnom vremenu ha
uredajima ogranicenih resursa. S druge strane, YOLO11x je najve¢i model koji karakterizi-
raju najbolje performanse detekcije, ali i znatno veci zahtjevi za raCunalnim resursima i dulje
vrijeme izvodenja. Izmedu navedenih krajnosti nalaze se inacice, YOLO11s, YOLO11m i
YOLO11l, koje nude dobar balans izmedu to¢nosti detekcije i raCunske sloZenosti. Na slici
5.3 prikazani su rezultati evaluacije na MS COCO skupu podataka [166], gdje su usporedene
razlicite inaice YOLO11 modela s prethodnim verzijama YOLO detektora. Moze se uociti
da YOLOI11 konzistentno ostvaruje povoljniji kompromis izmedu brzine izvodenja i to¢nosti
detekcije, pri cemu manji modeli (n, s) omogucuju brZzu inferenciju, dok veéi (I, x) postizu
viSu razinu preciznosti.

Iako je YOLOV12 najrecentniji model iz YOLO obitelji detektora, rezultati kompara-
tivnih studija pokazuju da YOLOI11 ostvaruje bolje performanse, nadmasujuci pritom svog
nasljednika [289, 293, 294]. Arhitektonske nadogradnje poput mehanizma paZnje po po-
dru¢jima i R-ELAN modula u YOLOvV12 povecale su sloZenost modela, ali nisu donijele
o¢ekivana poboljSanja, ¢ime su dodatno istaknuti izazovi u€inkovite integracije naprednih
mehanizama paznje u YOLO okvir [289]. U odnosu na YOLO11, YOLOV12 postize slabiju
brzinu izvodenja i loSije rezultate, uz vece racunalne zahtjeve [289, 293, 294]. Za primjene
u stvarnom vremenu koje zahtijevaju visoku brzinu i preciznost, optimalnim izborom se po-
kazala inac¢ica YOLO11 serije, YOLO11n [293].
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Slika 5.3: Usporedba performansi inacica YOLOI11 detektora s prethodnim YOLO
modelima (YOLOv5-YOLOv10). (Slika preuzeta iz [292].)

5.2. 'Treniranje modela

5.2.1. Tehnicke specifikacije racunalnog okruzenja

U okviru istraZivanja koriStena je usluga Napredno racunanje Sveucilista u Zagrebu Sve-
uciliSnog racunskog centra (Srce) [295]. Preciznije, za potrebe treniranja modela koriStena
je platforma Jupyter s operacijskim sustavom Ubuntu 22.04.4 LTS (Jammy Jellyfish). Ko-
risnickom okruZenju unutar SRCE Jupyter platforme dodijeljena je MIG instanca GPU-a
NVIDIA A100 s 4.9 GiB VRAM-a, dok su CPU 1 RAM resursi bili ogranieni unutar za-
jednickog fizickog ¢vora (AMD EPYC 7713P, 32 jezgre, 239 GiB RAM-a). Za pripremu,
treniranje i evaluaciju modela koriSteno je okruZenje JupyterLab, uz dodatnu uporabu Pyt-
hon skripti 1 Ultralytics CLI-a. Softversko okruZenje ukljuCuje programski jezik Python
3.11.9, uz koriStenje paketa Ultralytics 8.3.178 1 okvira PyTorch 2.8.0, dok su za obradu 1 vi-
zualizaciju podataka koristene standardne biblioteke poput NumPy-a, Pandas-a, OpenCV-a,

Albumentations-a i Matplotlib-a.

5.2.2. (Odabrani modeli i vrijednosti hiperparametara

U radu su koriStene tri inaCice YOLO11 detektora: YOLOI1In, YOLOI1s1 YOLOIIm. Veée
inacice YOLOvI1 111 YOLOI Ix nisu koriStene zbog znatno vece racunalne sloZenosti i memo-
rijskih zahtjeva. Odabrane manje inacice predstavljaju balans izmedu to¢nosti i u¢inkovitosti
te su pogodnije za primjenu u stvarnom vremenu. Odabrani modeli trenirani su kroz ukupno
250 epoha s mini-serijama veliCine 8, koje predstavljaju kompromis izmedu potro$nje me-
morije i brzine izvodenja [293]. Sve ulazne slike svedene su na rezoluciju 640 x 640, koja

se obi¢no koristi pri treniranju YOLO modela [284, 293]. Nastavno na praksu ranijih is-
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traZivanja [277, 284, 296, 293], za optimizaciju teZina koristi se SGD (Stochastic Gradient
Descent) optimizator s momentom 0.937 1 koeficijentom L, regularizacije (engl. weight
decay) 5-107%, dok je vrijednost stope ucenja postavljena na 0.01. Dodavanjem momenta
osigurava se stabilnija konvergencija tijekom procesa treniranja, a regularizacija teZina sprje-
Cava prenaucenost modela [297]. Treniranje je zapocelo fazom zagrijavanja (engl. warmup)
u trajanju od tri epohe, tijekom kojih se stopa ucenja i moment postupno povecavaju do za-
danih vrijednosti kako bi se stabilizirao proces ucenja. Funkcija gubitka definirana je kao
linearna kombinacija lokalizacijskog (L), klasifikacijskog (L) 1 distribucijskog (engl.
Distribution Focal Loss, Lgf1) gubitka: Lyoa = Apox - Loox + Meis - Lets + Magr - Lagr, pri
¢emu su teZine postavljene na Apoy = 7.5, Ays = 0.5, Agp = 1.5[277, 296, 288, 284], Cime
je naglasena vaznost precizne lokalizacije objekata. Prag pouzdanosti detekcije postavljen
je na 0.25, a prag preklapanja grani¢nih okvira (/oU) na 0.7. Takoder je koriStena 1 metoda
ranog zaustavljanja s pragom od 15 epoha kako bi se sprijecilo nepotrebno produzavanje
treniranja detektora u slucaju stagnacije performansi modela na skupu za validaciju.

Kako bi se povecala raznolikost skupa podataka, smanjila prenaucenost i1 osigurala veca
robusnost modela u stvarnim uvjetima primjene, tijekom treniranja primijenjene su razlicite
augmentacije podataka [297, 298]. KoriStene su forometrijske augmentacije (promjene
nijanse, zasicenosti i svjetline), geometrijske transformacije (translacije, skaliranje, horizon-
talno zrcaljenje), nasumicno brisanje dijela slike te kompozitna augmentacija mozaika [274]
koja kombinira viSe slika iz skupa za treniranje u jednu. Uz prethodno navedene, ru¢no de-
finirane augmentacije koriSten je i RandAugment [299], koji dodatno proSiruje varijabilnost
podataka nasumi¢nim odabirom transformacija iz unaprijed definiranog skupa. Detaljne vri-

jednosti hiperparametara prikazane su u Tablici 5.1.

5.2.3. Proces treniranja

Sve inalice detektora, YOLO11n/s/m, prvo su trenirane 100 epoha na manjoj verziji SSMOT
podskupa za detekciju, koja sadrzi 3131 sliku s ukupno 13 680 objekata. Podaci su po-
dijeljeni u omjeru 85:15 na skup za treniranje (2661 slika, 11 539 objekata), koriSten za
optimizaciju parametara modela, i na skup za validaciju (470 slika, 2141 objekt), koriSten
za praCenje performansi na nevidenim podacima. Kao pocetne tocke, koristile su se teZine
YOLO1 In/s/m modela predtrenirane na MS COCO skupu podataka.

U svrhu osiguravanja vece raznolikosti objekata i scena te poboljSanja sposobnosti gene-
ralizacije detekcijskog modela, provedeno je poluautomatizirano proSirenje skupa podataka.
YOLOI11m model s najboljim rezultatima na skupu za validaciju koriSten je za generira-
nje inicijalnih anotacija koje su potom ru¢no Kkorigirane. Na taj je nacin dobiven proSireni
SSMOT skup podataka za detekciju koji obuhvaca 8979 slika s ukupno 45 830 instanci obje-
kata, podijeljen u omjeru 85:15 na skup za treniranje 1 skup za validaciju. ViSe o samoj struk-

turi i karakteristikama SSMOT skupa podataka za detekciju moZe se pronaci u odjeljku 4.2.
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Tablica 5.1: Hiperparametri koristeni prilikom treniranja YOLO1 In/s/m modela.

Hiperparametar Vrijednost
Ukupan broj epoha 250
% Veli¢ina mini-serije 8
s Velicina ulazne slike 640 x 640
.g Optimizator SGD
= Stopa ucenja 0.01
g Moment 0.937
§ L, regularizacija 0.0005
g Prag za rano zaustavljanje 15
s < o .
g Pocetno zagrijavanje
M epohe 3
moment 0.8
stopa u¢enja pomaka 0.1
E )\'b()x 7.5
= Aels 0.5
5 kd 1l 1.5
Fotometrijske
nijansa 0.015
zasicenost 0.7
© svjetlina 0.4
=
IS Geometrijske
S translacija 0.1
§o skaliranje 0.5
i horiz. zrcaljenje 0.5
Slucajno brisanje 0.4
Mozaik 1.0
Auto augmentacije RandAugment

Nakon toga, svi modeli su se nastavili trenirati dodatnih 150 epoha na proSirenom skupu
podataka za detekciju, pri Cemu su upotrijebljene iste vrijednosti hiperparametara kao i u
prvih 100 epoha. Naposlijetku, YOLO11n/s/m modeli s najboljim performansama na va-
lidacijskom skupu evaluirani su na zasebnom testnom podskupu SSMOT skupa podataka.

Rezultati evaluacije prikazani su i raspravljeni u sljede¢em odjeljku.

5.3. Evaluacija modela

Kako bi se procijenila u€inkovitost treniranih detektora, provedena je njihova evaluacija na
zasebnom testnom podskupu SSMOT skupa podataka za detekciju. Pri tom su se koristile

standardne metrike koje objektivno kvantificiraju sposobnost modela u detekciji objekata
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razlicitih klasa. U nastavku se prvo definiraju metrike koje su koriStene (5.3.1), a potom se

prikazuju i analiziraju dobiveni rezultati (5.3.2).

5.3.1. Koristene metrike

Standardne metrike koje su koriStene za evaluaciju detekcijskih modela su redom preciznost,
odziv, mAPsq i mAPs.95.

Detekcija modela se smatra tocnom (engl. True Positive) ako preklapanje predvidenog
B, i stvarnog By; grani¢nog okvira prelazi zadani prag i, odnosno ako vrijedi IoU (B, By ) =
povrsina(B, N Bg)/povrsina(B, UBg;) > u. U suprotnom, detekcija se smatra laZznom (engl.
False Negative). Stvarni objekti koji nisu detektirani predstavljaju laZno negativne (engl.
False Negative) primjere. Temeljem navedenih klasifikacija definiraju se preciznost (engl.

Precision, P) i odziv (engl. Recall, R):

TP TP

P=——— R=———, 5.1
TP+FP TP+FN

gdje TP, FP 1 FN redom oznacavaju broj tocnih detekcija, laznih detekcija i laZzno negativ-
nih primjera pri zadanom IoU pragu u. Navedene metrike najprije se racunaju za svaku
klasu zasebno, a ukupna vrijednost se potom izracuna kao aritmeticka sredina vrijednosti po
klasama.

Prosjecna preciznost (engl. Average Precision, AP) saZima odnos preciznosti i odziva

u jednu vrijednost. MozZe se interpretirati kao povrsina ispod preciznost-odziv krivulje:

APy:/p(r)dr, (5.2)

gdje p(r) oznaCava vrijednost preciznosti za zadanu vrijednost odziva r. U praksi se ra-
cuna prema standardu MS COCO [166] koriStenjem 101 tocke odziva u intervalu od 0 do 1.
APs5o oznacava prosjecnu preciznost pri fiksnom IoU pragu od 0.5, dok APsq.95 predstavlja
prosjek vrijednosti AP-a kroz pragove od 0.5 do 0.95, u koracima od 0.05, ¢ime se dobiva
stroZi i sveobuhvatniji pokazatelj uspjeSnosti modela. AP vrijednost se racuna za svaku klasu
zasebno, a zatim se srednja prosjecna preciznost (engl. mean Average Precision, mAP)

dobije kao aritmeticka sredina vrijednosti po klasama.

5.3.2. Rezultati evaluacije

Pri izraCunu metrika razmatrane su detekcije Cija je pouzdanost ve¢a od 0.5, dok je prag prek-
lapanja (IoU) postavljen na 0.5. Tablica 5.2 prikazuje rezultate evaluacije odabranih inacica
YOLOI1 detektora na testnom podskupu SSMOT skupa za detekciju, nakon treniranja na

manjoj verziji SSMOT skupa za detekciju te nakon treniranja na njegovoj proSirenoj ver-
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ziji. Zajedno s vrijednostima evaluacijskih metrika navedene su i arhitekturne karakteristike
detektora, broj slojeva i1 parametara modela, te raCunalna sloZenost izrazena GFLOP (Giga

FLoating point OPeration)" vrijednostima za veli¢inu ulazne slike 640 x 640.

Tablica 5.2: Usporedba arhitekturnih karakteristika i evaluacijskih rezultata odabranih
inacica YOLOI11 detektora na SSMOT testnom podskupu.

Model Slojevi Parametri GFLOPs | Metrika Prl:].e POSIVI.J ¢
proSir.  prosir.

P 0.834  0.908

R 0.730  0.812

YOLO11n 181 2 591 985 6.5 mAPs, 0796  0.875
mAP5();95 0.660 0.764

P 0.869  0.915

R 0.759  0.837

YOLO11s 181 9432 049 21.6 mAPs, 0818  0.89]
mAP50:95 0.707 0.799

P 0.885 0.924

R 0.780  0.862

YOLOI11Im | 231 20061 489 68.2 mAPs, 0844  0.908
mAP50.95 0.752  0.829

Iz rezultata evaluacije prikazanih u Tablici 5.2 vidljiv je pozitivan ucinak treniranja mo-
dela na proSirenom skupu podataka za detekciju. ZabiljeZen je porast vrijednosti svih me-
trika kod svih detektora, Sto upucuje na to da treniranje na veéem i raznolikijem skupu po-
dataka znacajno doprinosi povecanju robusnosti i pouzdanosti modela u detekciji objekata.
Najbolje performanse, oc¢ekivano, ima najveci razmatrani model YOLOI11m s vrijednoS¢u
mAPsg.95 = 0.829. Medutim, performanse manjih modela ne zaostaju znacajno: YOLOI11s
postize mAPsp.95 = 0.799, dok YOLOI1 1n ostvaruje mAPsg.95 = 0.764 s viSestruko manjom
racunalnom sloZeno$¢u i1 brojem parametara, S§to ga ¢ini dobrim kompromisom izmedu to¢-
nosti 1 u€inkovitosti, osobito za primjene u stvarnom vremenu ili na uredajima s ograni-
¢enim resursima. Nakon dodatnog treniranja na proSirenom skupu podataka, YOLO11n
postize mAPsg.95 = 0.764, Sto nadmaSuje performanse najveéeg modela YOLO11m trenira-
nog isklju¢ivo na manjem skupu podataka s vrijednosti mAPsy.95 = 0.752. Ovakav rezultat
naglasava vaznost dodatnog treniranja modela na opseZnijem i reprezentativnhom skupu po-
dataka, koji u pojedinim slucajevima moZe imati veéi utjecaj na performanse modela od
njegove same strukturne sloZenosti. Cjelovit prikaz rezultata svih metrika po klasama i mo-
delima, treniranima prije i nakon proSirenja detekcijskog podskupa, nalazi se u Dodatku C

(Tablica C.1), dok su rezultati po klasama finalnih modela izdvojeno prikazani u Tablici 5.3.

!GFLOP = broj milijardi operacija s pomiénim zarezom potrebnih za jedan prolaz kroz mreZu s odredenom
veli¢inom ulazne slike
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Tablica 5.3: Rezultati evaluacije YOLOI In/s/m detektora na testnom SSMOT podskupu,
prikazani po klasama.

YOLO11ln YOLO11s YOLO11m
Klasa P R mAPs mAP50;95 P R mAP50 mAP50;95 P R "’lAPSO mAP50;95
Small craft 0974 0.848 0.921 0.747 0979 0.874 0.935 0.768 | 0.983 0.877 0.937 0.801

Small Fishing Boat 0.767 0.388 0.599 0.485 | 0.692 0.424 0.600 0.530 | 0.688 0.518 0.640 0.573
Small Passenger Ship | 0.910 0.874 0917 0.798 | 0.907 0910 0.937 0.830 | 0.961 0.904 0.946 0.860

Fishing Trawler 0982 0951 0975 0816 |0983 0959 0979 0.845 | 0986 0973 0985  0.877
Large Passenger Ship | 0.995 0993 0.995 0975 | 0998 0993 0994 0974 | 0998 0992 0992 0977
Sailing Boat 0958 0.895 0943 0866 |0974 0916 0955 0903 | 0969 0931 0964 0917
Speed Craft 0.835 0.801 0.845 0.680 |0.861 0.850 0.883 0740 | 0901 0.869 0.904 0.786
Motorboat 0.748 0467 0.606 0500 |0.780 0.557 0.668  0.580 | 0.842 0.633 0745  0.647
Pleasure Yacht 0878 0762 0.852  0.743 |0928 0768 0.871 0798 |0.904 0815 0893  0.829
Ferry 0985 0983 0990 0928 |0984 0983 0989 0932 | 0983 0990 0994  0.949
High-speed craft 0956 0.967 0980 0.866 |0.978 0972 0985 0.888 | 0951 0978 0988  0.907
Zajedno | 0908 0.812 0.875 0.764 |0.915 0837 0.891 0799 |0.924 0862 0908  0.829

Modeli najvise poteskoca imaju u ispravnoj detekciji objekata klase Small Fishing Boat,
koja je ujedno i najmanje zastupljena u SSMOT skupu podataka za detekciju. Odziv modela
YOLO11n na toj klasi iznosi svega 0.338, dok je kod modela YOLO1 1m neSto visi i doseze
0.518. Medutim, problem ne proizlazi samo iz nedovoljne zastupljenosti primjera, nego
i iz visoke vizualne sli¢nosti objekata klase Small Fishing Boat s objektima drugih klasa,
poput klase Speed Craft (otvorene brodice bez nadgrada imaju sli¢ne vizualne karakteristike
kao manja otvorena brza plovila). Ta Cesta zabuna jasno se oCituje u matricama konfuzije
na Slici 5.5. Prikazane matrice konfuzije su normalizirane po stupcima, prikazujuéi tako
relativne udjele umjesto apsolutnih vrijednosti ¢cime se omogucuje jasniji uvid u performanse
modela po klasama, neovisno o njihovoj zastupljenosti u danom skupu podataka 2.

Mali broj primjera u skupu podataka za treniranje, ne mora nuzno predstavljati ograni-
¢enje ako je rije¢ o klasi s jasno prepoznatljivim i distinktivnim vizualnim obiljeZjima. To
potvrduju vrlo dobri rezultati na klasi High Speed Craft, koja je takoder slabo zastupljena
u danom skupu (1357 od 39017 instanci u skupu za treniranje, naspram 1101 za Small Fi-
shing Boat; Poglavlje 4, odjeljak 4.2, Tablica 4.2). Uz Small Fishing Boat, detektori se Cesto
,muce” 1 s klasom Motorboat, Cije se instance nerijetko zamjenjuju s onima klase Speed
Craft 1li ostaju nedetektirane pri zadanoj granici pouzdanosti. Srednje vrijednosti postiZe 1
sama klasa Speed Craft, $to se moZe pripisati intraklasnoj varijabilnosti te djelomicnoj vizu-
alnoj slicnosti s drugim klasama, primjerice sa spomenutom Small Fishing Boat.

Upravo su na tim zahtjevnijim klasama ostvareni najznacajniji pomaci promjenom arhi-
tekture detektora s jednostavnije YOLOI11n na sloZzeniju YOLO11m, kao 1 dodatnim treni-
ranjem na proSirenom skupu podataka s vecim brojem i raznolikijim primjerima tih klasa.
Navedeno je saZeto ilustrirano na Slici 5.4, koja prikazuje toplinske karte (engl. heatmap)

razlika mAPsp.95 vrijednosti: (a) finalnog detektora YOLO11m i jednostavnijih varijanti

Vrijednosti na dijagonali normalizirane matrice konfuzije u pravilu prikazuju odziv pojedine klase, jer pri-
kazuju udio ispravno detektiranih primjera u odnosu na sve uzorke te klase. Ipak, javljaju se manja odstupanja
u odnosu na formalno izracunate vrijednosti odziva, ponajprije zbog nacina na koji YOLO implementira evalu-
aciju (izraCunu preciznosti i odziva s dodatnim koracima poput NMS filtriranja i obrade visestrukih detekcija),
kao i zbog numerickog zaokruZzivanja prilikom prikaza.
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YOLOI11s/m; (b) modela treniranih iskljucivo na prvoj, manjoj varijanti skupa za detekciju i
onih treniranih na proSirenom SSMOT skupu za detekciju. Naglasak je stavljen na mAPs.95
metriku jer ona integrira viSe razli¢itih IoU pragova i preciznost-odziv krivulju, pruzajuci

tako robusniju usporedbu od jednopragovnog mAP te pojedina¢nih mjera preciznosti i od-

zZiva.
A mAPsp.95 A mAPsp.95
YOLO11m - YOLO11n/s nakon - prije proSirenja
0.200 0.200
Ferry Ferry
Fishing Trawler 0.175 Fishing Trawler 0.175
¥ High-speed craft
High-speed craft 0.150 gh-sp! 0.150
Large Passenger Ship Large Passenger Ship
0.125 0.125
Motorboat Motorboat
Pleasure Yacht 0.100 Pleasure Yacht 0.100
Sailing Boat Sailing Boat
0.075 0.075
Small Fishing Boat Small Fishing Boat
0.050 . 0.050
Small Passenger Ship Small Passenger Ship
Small craft 01025 Small craft 0.025
Speed Craft Speed Craft
0.000 0.000
YOLO11m-YOLO1ln YOLO1lm-YOLOlls YOLO11ln YOLO11s YOLO11m

A mAPsp.95 A mAPsg.95

(a) (b)

Slika 5.4: Toplinske karte razlika mAPsy.95 na testnom skupu: (a) arhitekturni ucinak:
YOLOI11m u odnosu na YOLOI1 1n/s; (b) ucinak treniranja na prosirenom skupu za
detekciju: modeli trenirani na prosirenoj naspram modela treniranih samo na pocetnoj
verziji SSMOT skupa za detekciju.

Iz Slike 5.4 (a) je jasno da sloZenija arhitektura ima konzistentan dobitak nad manjima
pri ¢emu je dobitak YOLO11m detektora nad manjim modelom YOLOI1 1n izraZeniji, §to je
bilo 1 ocekivano. Nadalje, najveci dobitak dobiven je na klasi Motorboat (0.147), a slijede
Speed Craft (0.106) i Small Fishing Boat (0.088). Na Slici 5.4 (b) mozZe se uociti znaCa-
jan pozitivan ucinak treniranja modela na proSirenom skupu podataka, osobito kada je rijec
o problematicnim klasama Motorboat (dobitak: YOLO11n - 0.194, YOLO11lm - 0.154)
Speed Craft (dobitak: YOLO11n - 0.121, YOLO11m - 0.106) i Small Fishing Boat (dobitak:
YOLOI1n - 0.188, YOLO11m - 0.157). Vece, jasno odijeljene klase poput Ferry i Large
Passenger Ship biljeze pozitivne promjene, ali neSto manjeg intenziteta. Pozitivan u€inak
proSirenja izraZeniji je kod manjih modela, dok je kod najveéeg modela YOLO1 1m prisutan,
ali skromniji.

Kako bi se dobio uvid u performanse razlicitih varijanti detektora, u nastavku su prikazani

konkretni primjeri njihovih detekcija na testnim slikama.
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Slika 5.5: Normalizirane matrice konfuzije YOLOI In/m detektora na testnom podskupu.
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Primjeri detekcija YOLO11m detektora treniranog na manjem i na proSirenom skupu
podataka, prikazani su na Slici 5.6. Mogu se uociti poboljSanja u detekciji objekata pri sma-
njenoj vidljivosti (druga slika), u prepoznavanju manjih plovila u daljini (prva i Cetvrta slika)
te u detekciji djelomi¢no zaklonjenih objekata i objekata s preklapajuim grani¢nim okvi-
rima (treéa i Cetvrta slika). Istodobno, zabiljeZeni su i izazovi finalnog modela, primjerice
pri detekciji dvaju plovila koja plove paralelno, a model ih spaja u jednu detekciju, kao i pri
ispravnoj klasifikaciji manjih objekata u daljini (prva slika).

YOLO11m (prije) YOLO11m (nakon)

02-08-2023 14:11:33 Wed " A 3 s 02-08-2023 14:11:33 Wed

03-08-2023 07:36:07 Thu

118-08-202352: 50 {1

23164242 Sat

Slika 5.6: Detekcije dobivene YOLO11m detektorom treniranom na manjem skupu
podataka (lijevo) i nakon treniranja na proSirenom skupu za detekciju (desno).

S druge strane, Slika 5.7 na istim primjerima usporedno prikazuje detekcije dobivene
finalnim varijantama YOLO1 1n/s/m detektora. YOLO11m postiZe najbolje rezultate u uvje-
tima smanjene vidljivosti, detektirajudi sva tri prisutna plovila (druga slika). U slucaju prek-
lapanja/zaklonjenosti jedrilica na Cetvrtoj slici, YOLO11m i YOLO11s ostvaruju bolje re-
zultate od YOLO11n, dok se u scenariju preklapanja objekata na trecoj slici najuspjesniji
pokazuje YOLOI11m: YOLOI11n generira neprecizan granicni okvir, YOLOI11s daje dvije
odvojene detekcije umjesto jedne, dok YOLO1 1m pravilno prepoznaje objekt.
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Slika 5.7: Primjeri detkecija dobivenih finalnim verzijama detektora YOLO1 In/s/m.
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6. REIDENTIFIKACIJSKI MODEL

Zadatak reidentifikacije plovila od iznimne je vaznosti za sustave automatskog pracenja, jer
omoguduje prepoznavanje istog plovila u razli¢itim vremenskim trenutcima i iz razli¢itih
perspektiva. U ovom su poglavlju najprije predstavljena dva modela koriStena za reidentifi-
kaciju plovila - ResNet50 1 OSNet, zatim je detaljno opisan postupak njihove implementacije
i treniranja, a na kraju su opisane metrike koristene za evaluaciju te su prikazani i analizirani

dobiveni rezultati.

6.1. Koristeni modeli

U svrhu rjeSavanja problema reidentifikacije odbrane su dvije razlicite arhitekture dubokih
konvolucijskih mreZa - ResNet50 i OSNet. ResNet50 je jedna od najcesce koriStenih arhitek-
tura u podrucju racunalnog vida koja se, zahvaljujuci svojoj robusnosti i fleksibilnosti, koristi
u Sirokom spektru zadataka, od klasifikacije slika [116, 180, 300] i semanticke segmentacije
[301, 302, 303] pa sve do reidentikacije objekata [304, 305, 306]. S druge strane, OSNet
arhitektura je specijalno razvijena za potrebe zadatka reidentifkacije. Paralelnom primje-
nom i evaluacijom ovih dvaju modela omogucéeno je vrednovanje performansi opéeg, Siroko
primjenjivog modela i njegova usporedba s modelom dizajniranim specifi¢no za zadatak re-

identifikacije.

6.1.1. ResNet50

ResNet50 arhitektura dio je obitelji rezidualnih mreza koje su predstavili He 1 sur. [180]
s ciljem prevladavanja problema degradacije to¢nosti kod vrlo dubokih neuronskih mreza.
Temeljna ideja pociva na uvodenju tzv. precac (engl. shortcut) veza koje izravno povezuju
ulaz i izlaz odredenog sloja mreZe tako da se izlaz ne raCuna samostalno veé se zbraja s
izvornim ulaznim podatkom. Na taj na¢in mreZa ne u¢i direktno ciljno preslikavanje f(x),
ve¢ rezidualnu funkciju fz(x) = f(x) —x, §to u praksi olakSava optimizaciju i omogucuje
treniranje znatno dubljih arhitektura.

ResNet50 sastoji se od 50 slojeva organiziranih kroz dvije vrste rezidualnih modula:
identitetskih (engl. identity) i konvolucijskih (engl. convolution) blokova. Identitetski blo-
kovi primjenjuju izravne precac veze te se stoga koriste kada su dimenzije ulaza i odabranog

izlaza jednake. S druge strane, u slucajevima razli¢itih dimenzija, koriste se konvolucijski
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blokovi s projekcijskim preac vezama koje pomocu 1 x 1 konvolucije uskladuju dimenzije

ulaza 1 izlaza. Ilustracija dviju vrsta rezidualnih blokova prikazana je na Slici 6.1.

Konvolucijski blok Identitetski blok
! I
RelLU RelLU ?
inear Cony, 1x1 linear " Cony, 1x1
RelLU Cony, 3x3 Conv, 1x1 linear RelU Conv, 3x3
! 1
RelU COnV, 1x1 RelLU COnV, 1x1
input input

Slika 6.1: Dvije vrste rezidualnih blokova. Svaki blok racuna funkciju fr(x)+ g(x), gdje x
oznacava ulaz modula, a fgr(x) izlaz triju uzastopnih konvolucijskih slojeva. Funkcija g u
konvolucijskom bloku (lijevo) djeluje kao projekcija kojom se uskladuju dimenzije x i fg(x),
dok je u identitetskom bloku (desno) definirana kao g(x) = x. (Slika preuzeta iz [116].)

Osim precac veza, vaznu ulogu u ResNet arhitekturi ima i normalizacija mini-serija, koja
se primjenjuje neposredno iza konvolucije, a prije nelinearne aktivacijske funkcije. Na taj se
nacin dodatno stabilizira i ubrzava proces treniranja mreZe. Detaljna arhitektura ResNet50
mreZe koriStene u ovom radu, prikazana je na Slici 6.2. U odnosu na izvorni model, izmi-
jenjen je broj neurona u zavrSnom softmax sloju s 1000 (koliko ih ima u ImageNet skupu
podataka) na 220, Sto odgovara broju razlicitih identiteta u SSMOT RelD skupu podataka.
Za svaku ulaznu sliku, model izdvaja 2048-dimenzionalni vektor znacajki, dobiven na iz-
lazu sloja globalnog prosje¢nog saZimanja (engl. Global Average Pooling) [307], koji se
potom koristi kao reprezentacija plovila u zadatku reidentifikacije. Informacije sadrZzane u
2048 dvodimenzionalnih mapa znacajki posljednjeg identitetskog bloka saZimaju se u vektor
iste dimenzionalnosti, pri ¢emu je i-ta komponenta vektora dobivena kao aritmeticka sredina

vrijednosti i-te mape znacajki, i € {1,...,2048}.
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Slika 6.2: Arhitektura ResNet50 modela. (Slika preuzeta iz [116], uz izmjene.)
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6.1.2. OSNet

Kako bi proces reidentifikacije bio $to uspjesniji, nuzno je razviti znacajke koje su dovoljno
diskriminativne da jasno razlikuju vrlo sli¢ne objekte, a istodobno dovoljno robusne da os-
tanu primjenjive u razliitim uvjetima i okruZenjima. U tom kontekstu, Zhou i sur. [228]
predlazu OSNet (Omni-Scale Network) model, koji uvodi koncept ucenja znacajki na vise
skala (engl. omni-scale feature learning). Osnovna ideja pritom je istovremeno obuhvatiti
znacajke razli€itih razmjera te ih dinamicki kombinirati u jedinstvenu reprezentaciju koja
najbolje odgovara zadanom ulazu.

Temelj OSNet arhitekture ¢ine omni-scale rezidualni blokovi, prikazani na Slici 6.3, koji
se sastoje od viSe konvolucijskih grana s receptivnim poljima razliCitih veli¢ina. Recep-
tivno polje dimenzije (2t + 1) x (2¢ + 1) dobije se sukcesivnim slaganjem ¢ "laganih" (engl.
lite) 3 x 3 konvolucijskih blokova. Ovi blokovi koriste 3 x 3 dubinski-razdvojene konvolu-
cije (engl. depth-wise separable convolutions), koje zahtijevaju priblizno 8 do 9 puta ma-
nje operacija u odnosu na standardne konvolucije [308]. Za razliku od izvorne varijante
dubinski-razdvojene konvolucije, u OSNet-u se najprije provodi 1 x 1 konvolucija po ele-
mentima (engl. point-wise convolution), kojom se vrijednosti razli¢itih kanala ulaza na istoj
prostornoj poziciji linearno kombiniraju u novu informaciju. Tek potom se primjenjuje 3 x 3
dubinska konvolucija (engl. depth-wise convolution), kojom se ulazne znacajke filtriraju

koriStenjem zasebne konvolucijske jezgre za svaki kanal.

Lite 3x3

Conv 1x1
DW Conv 3x3
BatchNorm
RelLU

[ Lite3x3 |[ Lite3x3 |[ Lite 3x3
[ Lite3x3 |[ Lite3x3 || Lite 3x3
[ Lite3x3 || Lite3x3 |

i

Residual

Output

Slika 6.3: Osnovni gradevni blokovi OSNet modela. Oznake: AG - agregacijaska vrata; R -
velicina receptivnog polja. (Slika preuzeta iz [228], uz izmjene.)

95



Poglavlje 6. REIDENTIFIKACIJISKI MODEL

Svaka konvolucijska grana generira homogene znacajke jedne prostorne skale. Kako
bi se istodobno obuhvatile znacajke viSe razliCitih skala, OSNet uvodi mehanizam agrega-
cijskih vrata (engl. Agregation Gate, AG), koji dinamicki kombinira izlaze pojedinih grana
dodjeljujudi im teZine, ovisno o ulazu. Time se modelu omogucuje da, za svaku ulaznu sliku,
naglasi one skale ili njihove kombinacije koje su najrelevantnije. Agregacijska vrata najprije
trodimenzionalne ulazne znacajke komprimiraju u dvodimenzionalni vektor koristeci sloj
globalnog prosjecnog saZzimanja. Na dobiveni vektor zatim se primjenjuje mala neuronska
mreZa sastavljena od potpuno povezanih slojeva, koja generira koeficijente Sto sluze kao di-
namicke teZine za kombiniranje izlaza konvolucijskih grana. Pri tome se koristi jedinstvena
mreza Cije su tezine zajednicke za sve grane.

Detaljna arhitektura OSNet modela prikazana je na Slici 6.4. Model je dostupan u vise
varijanti koje se razlikuju prema Sirini mreZze. Oznake poput 0.5, 0.75 ili 1.0 oznaCavaju
omjer broja kanala u konvolucijskim slojevima u odnosu na osnovnu varijantu, OSNet 1.0.
Manje varijante, poput OSNet 0.75, imaju smanjen broj parametara, zahtijevaju manje racu-

nalnih resursa te omogucéuju brZzu obradu i manju potro$nju memorije, uz blago smanjenje

performansi.
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Slika 6.4: Arhitektura implementiranog OSNet modela.

6.2. Implementacija i treniranje ReID modela

Za implementaciju modela reidentifikacije koriStena je Torchreid [309] biblioteka, u kojoj
modeli dolaze s teZinama predtreniranim na ImageNet [125] skupu podataka. Pritom za-
dane vrijednosti dimenzija ulaznih slika iznose visina = 256 i Sirina = 128, $to je standard
u reidentifikaciji osoba [228, 310, 311] jer odgovara specificnom obliku grani¢nih okvira
za ljude. Buduci da takve dimenzije nisu karakteristine za plovila, provedena je prila-
godba: prvo je na podacima za ucenje iz SSMOT RelD skupa podataka odredena medijalna

vrijednost omjera Sirine 1 visine (= 2.3), a zatim je odabrana kombinacija visina = 160 i
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Sirina = 368 koja zadovoljava taj omjer uz razuman kompromis izmedu oCuvanja detalja

slike 1 potroSnje memorije.

6.2.1. Konstrukcija mini-serija

Tijekom treniranja koriste se mini-serije veli¢ine 32 (P x K), pri ¢emu svaka sadrzi P = 8
razlicitih identiteta i K = 4 slika za svaki identitet. Od tih osam identiteta Cetiri pripadaju
istoj fokus-klasi, dok se preostala Cetiri biraju iz ostalih klasa. Na taj na¢in model istodobno
uci izrazene meduklasne razlike (npr. izmedu trajekta i jahte) i suptilne razlike unutar iste
klase (npr. izmedu dva trajekta). Konstrukcija mini-serije zapocinje odabirom fokus-klase
uz vjerojatnosti proporcionalne potenciji Nl-Y , gdje je N; broj razlicitih identiteta klase 7, dok
eksponent y = 0.5 ublaZzava dominaciju velikih klasa. Pri tom se koristi dodatno pravilo
kojim se s vjerojatnoscu 0.3 potice odabir manjinskih klasa (onih s najvise 10 identiteta).
Iz odabrane fokus-klase se nasumi¢no odabiru Cetiri razliCita identiteta, a preostala Cetiri iz
ostalih klasa. Za svaki identitet uzimaju se Cetiri nasumi¢no odabrane slike.

Kako bi se povecala robusnost modela i njegova sposobnost generalizacije na razlicite
polozaje plovila i uvjete snimanja, tijekom treniranja primijenjene su sljedece augmentacije
podataka: (i) nasumicno horizontalno zrcaljenje, koje smanjuje osjetljivost modela na lijevo-
desnu orijentaciju plovila; (ii) nasumicno izrezivanje kojim se simuliraju pomaci i neprecizni
grani¢ni okviri; (iii) nasumicne promjene svjetline i kontrasta radi veée otpornosti na pro-
mjene osvjetljenja i vremenskih prilika; te (iv) nasumicno brisanje pravokutnog podrucja
kojim se imitira djelomic¢na okluzija plovila.

Prilikom uditavanja u mini seriju, dimenzije odabranih slika se najprije prilagodava za-
danim dimenzijama (visina = 160, Sirina = 368) primjenom bilinearne interpolacije. Za-
tim se, s vjerojatno$¢u 0.5, primjenjuje horizontalno zrcaljenje. U sljede¢em koraku slika
se bilinearnom interpolacijom privremeno povecava na dimenzije 180 x 414, te se iz nje
nasumicno izrezuje isjecak ciljnih dimenzija 160 x 368, ¢ime se uvodi prostorna varijabil-
nost poloZaja objekta unutar fiksnih ulaznih dimenzija. Nakon toga slijedi nasumicna pro-
mjena svjetline s faktorom 0.2 1 kontrasta s faktorom 0.15, nakon Cega se slika pretvara
u tenzor s vrijednostima u [0,1] te se po kanalima standardizira statistikama ImageNet-a:
(ur, pc, up) = (0.485, 0.456, 0.406), (o, OG, 6p) = (0.229, 0.224, 0.225). Naposlijetku

se provodi brisanje jednog pravokutnog podrucja slike koje je nasumi¢no odabrano.

6.2.2. Optimizator i funkcija gubitka

Model reidentifikacije treniran je 32000 iteracija koriste¢i Adam [312] optimizator s pocet-
nom stopom ucéenja od 3 - 10~# te koeficijentom L, regularizacije 5- 107>. Stopa ucenja se
pritom smanjivala svakih 8000 iteracija faktorom 0.1.

U zadacima reidentifikacije osoba pokazalo se korisnim trenirati modele kombinacijom

klasifikacijskog gubitka unakrsne entropije (engl. Cross-Entropy loss, ¢esto nazivan i ID
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loss) i gubitka trojki (engl. triplet loss) [304, 150, 313, 314]. Klasifikacijski gubitak uc¢i
mreZu ispravno razlikovati identitete u skupu za treniranje te tako potice razvoj diskrimina-
tivnih znacajki koje dobro razlikuju poznate identitet, ali sam po sebi ne jamci dobru ge-
neralizaciju na nove, nevidene identitete. S druge strane, gubitak trojki organizira metricki
prostor tako da su pozitivni primjeri istog identiteta bliZe, a negativni dalje, Sto je dobro za
generalizaciju, ali njegovo samostalno koriStenje u praksi oteZava treniranje te sam proces
¢ini nestabilnim. Kombinacijom ova dva gubitka postiZe se optimalan ucinak: klasifika-
cijski gubitak osigurava stabilnu optimizaciju modela, a gubitak trojki pridonosi robusnoj
generalizaciji na nove identitete. Shodno tome, u ovom radu se koristi varijanta kombinacije
s izgladivanjem oznaka (engl. label smoothing) i odabirom teSkih pozitivnih i negativnih
primjera (engl. hard positive/negative mining).

Neka je I ulazna slika trenutne mini-serije B, p(I) = (p1(1),...,pn(I)) predvidena vje-
rojatnosna distribucija po klasama/identitetima za sliku 7 gdje je N broj identiteta u skupu za
treniranje. Nadalje, neka je y € {1,..., N} stvarni identitet plovila na slici /. Tada se gubitak
unakrsne entropije s izgladivanjem oznaka [315] definira s:

Lep(0; 1,y) = )-log (pi(1)) , (6.1)

“MZ

gdje O predstavlja trenutne parametre modela,

1—¢, akoi=y,

a)=4 ¢ (62)
——, inace.
N—-1

je izgladena verzija oznake y, a € = 0.1 faktor izgladivanja. KoriStenje unakrsne entropije s
izgladivanjem oznaka pokazalo se korisnim jer smanjuje prenaucenost, ublaZzava pretjerano
samouvjerena predvidanja i potice bolju generalizaciju na nove podatke [315, 150].

Za ulaznu sliku 7, neka 1 ; oznacava pozitivni primjer iz trenutne mini-serije koji je naju-
daljeniji od /, a I, negativni primjer koji je najbliZi /. Formalno, neka je B, skup svih slika
dane mini-serije B koje odgovaraju identitetu y, fg preslikavanje koje danoj slici pridruzi m-
dimenzionalni vektor znacajki dobiven ReID modelom s parametrima 6, a d : RY x RY - R,
kvadrat euklidske udaljenosti d(f1, f2) = || f1 — sz%. Tada su teski pozitivni i teSki negativni

primjer redom dani s:

I, = max d(fo(l), fo(lp)), 1, = min d(fo(l), fo(l)), (6.3)

I,€By, I,#1 [bGB\B

dok je trostruki gubitak s odabirom teSkih pozitivnih i teskih negativnih primjera [304]
definiran kao:

Liripler(8; 1,y) = max {0, d (fo(l), fo(I;)) —d (fo(l), fo(ly))+m}. (6.4)
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Na ovaj nacin model se prisiljava da uci iz najzahtjevnijih primjera kako bi se ubrzalo i
stabiliziralo u€enje diskriminativnih znacajki. Konacno, ukupan gubitak modela za dani

ulaz / i pripadajuéu oznaku y je onda zbroj gubitaka:

L(e; 17)7) = LCE(& I,y) +Ltriplet(e; I,y). (65)

6.3. Evaluacija RelD modela

Kako bi se ocijenila ucinkovitost razvijenih modela za reidentifikaciju plovila, provedena
je njihova evaluacija na testnom skupu SSMOT RelD podataka, koji se standardno sastoji
od skupa upita i galerije. Tijekom evaluacije provjerava se sposobnost modela da za svaku
se ispituje njegova tocnost i robusnost u sloZenim uvjetima pretrazivanja kakvi se ocekuju
u stvarnoj primjeni. UspjeSnost modela kvantitativno je mjerena primjenom standardnih
RelD metrika, koje omogucuju objektivnu procjenu performansi u zadatku reidentifikacije.
U nastavku se najprije u pododjeljku 6.3.1 detaljno opisuju koriStene metrike, a zatim su u

pododjeljku 6.3.2 prikazani i analizirani rezultati evaluacije implementiranih modela.

6.3.1. Koristene metrike

Za potrebe kvantitativne procjene performansi odabrane su standardne metrike koje se uobi-
¢ajeno primjenjuju u podrucju reidentifikacije. Njihova primjena omogucuje objektivnu eva-
luaciju ucinkovitosti razvijenih modela.

Neka Q oznacava skup upita, a G galeriju. Za svaki upit ¢ € Q model generira rangiranu
listu slika iz galerije R; = (r1, 72, ..., r|g|) sortiranu prema odabranoj mjeri sli¢nosti tako
da je ry primjer galerije koji je najsli¢niji upitu g. Nadalje, neka %, C G oznaCava skup svih
pozitivnih instanci galerije za dani upit q.

Kumulativna karakteristika podudaranja (engl. Cumulative Matching Characteris-
tic, CMC) ili Rank-k metrika tocnosti podudaranja [313] mjeri vjerojatnost da se barem
jedan primjer galerije trazenog identiteta p € ¥, pojavi medu prvih k elemenata rangirane
liste &,. Neka je

1, ako ®,N{ri,r2,...,rk} #0

Accir(q) = ' , (6.6)
0, inace
tada je
1
Rank-k = — Y Acci(q). (6.7)

U literaturi se najce$¢e navode Rank-1, Rank-5 i Rank-10 metrike [316, 317, 318, 319], pri
¢emu je Rank-1 od osobite vaznosti jer oznacava vjerojatnost da se primjer galerije ispravnog

identiteta nalazi na samom vrhu rangirane liste.
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Glavno ograni¢enje CMC metrike ocCituje se u situacijama kada galerija sadrZi viSe po-
zitivnih primjera istog identiteta, kao Sto je slucaj i u SSMOT RelD skupu podataka. Za
uspjesan rezultat (Acci(q) = 1) tada je dovoljno da se barem jedan pozitivan primjer galerije
pojavi unutar prvih k pozicija rangirane liste, dok se rang preostalih pozitivnih primjera u pot-
punosti moZe zanemariti. Posljedi¢no, model mozZe postici visoke vrijednosti ovih metrika
cak i ako je vedina primjera ispravnog identiteta pri samom kraju rangirane liste. Upravo
zbog toga se u praksi CMC gotovo uvijek nadopunjuju mAP metrikom, koja u obzir uzima
sve pozitivne primjere 1 njihove pozicije unutar rangirane liste [313].

Kako bi se u obzir uzela kvaliteta cjelokupnog rangiranja, koristi se srednja prosjec¢na
preciznost (engl. mean Average Precision, mAP). Za svaki upit g se prvo rafuna prosjecna

preciznost (AP) dana s:

|G|
AP Z ) - rely( (6.8)

pri emu je
1, akojer;€P,
rel, (i) = st (6.9)
0, inace
dok je

1 i
== Z rely(j) (6.10)
=1

preciznost izraCunata na prvih i pozicija rang liste &,. Potom se srednja prosjeCna preciznost

racuna kao aritmeticka sredina dobivenih AP vrijednosti:

AP = AP 6.11
" |Q,|q§2 (1D

6.3.2. Rezultati evaluacije

Na temelju definiranih metrika provedena je evaluacija implementiranih modela na testnom
skupu SSMOT RelD podataka. U ovom su pododjeljku prikazani dobiveni rezultati, zajedno
s odgovaraju¢om analizom i interpretacijom, kako bi se procijenila uc¢inkovitost modela u
zadatku reidentifikacije plovila.

Tablica 6.1 prikazuje usporedbu osnovnih karakteristika triju koriStenih ReID modela, pri
¢emu svi koriste ulaze dimenzija 160 x 368. Usporedeni su broj zna€ajki u izlaznom vektoru,
broj parametara modela te racunska sloZenost izraZena GFLOP vrijednostima, uz dvije vre-
menske mjere: (1) latenciju izraCuna izlaza modela, odnosno prosjecno vrijeme potrebno za
generiranje vektora znacajki jedne ulazne slike, te (2) vrijeme pretrage, koje predstavlja pro-
sjecno trajanje usporedbe jednog upita s galerijom od 10000 uzoraka. Mjerenja su provedena
na racunalnom sustavu s Intel Core 17-9850H procesorom, 16 GB radne memorije i NVIDIA

Quadro RTX 3000 grafickom karticom, uz koriStenje operacijskog sustava Windows 11 Pro.
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Unato¢ znatno manjem broju parametara i niZoj racunskoj sloZenosti, OSNet modeli
imaju vecu latenciju generiranja znacajki. Navedeno se moZe pripisati arhitekturnim 1 im-
plementacijskim ¢imbenicima: OSNet modeli koriste specijalizirane blokove ¢ija paralelna
struktura oteZava optimizaciju i nije u potpunosti prilagodena optimizacijama u postoje¢im
GPU bibliotekama, dok se ResNet oslanja na standardne konvolucijske operacije koje su
maksimalno optimizirane u okviru CUDA/cuDNN okruZenja. S druge strane, prosje¢no vri-
jeme usporedbe vektora znacajki upita s vektorima znacajki galerije kod ResNet modela vise

je od tri puta dulje zbog vece dimenzionalnosti njegovih izlaznih vektora.

Tablica 6.1: Usporedba karakteristika RelD modela.

Model Br. znacajki Parametri GFLOPs Latencija  Vrijeme pretrage

(ms) (ms)
OSNet 0.75 512 1398 614 1.07 16.751 1.226
OSNet 1.0 512 2282 368 1.82 16.479 1.226
ResNet50 2048 23 958 812 4.88 6.610 4.024

Tablica 6.2 prikazuje usporedne rezultate evaluacije odabranih ReID modela na SSMOT
RelD testnom podskupu s galerijom od 488 slika, i to u varijanti s unaprijed naucenim tezi-
nama na ImageNet [125] skupu podataka te nakon dodatnog ucenja na domenski specificnom
SSMOT RelD skupu podataka.

Tablica 6.2: Usporedba performansi RelD modela s ImageNet teZinama i nakon dodatnog
ucenja na SSMOT RelD skupu podataka.

Model Skup podataka  Sliénost mAP Rank-1 Rank-5 Rank-10
ImageNet kosinusna  57.2 82.0 94.3 96.7
OSNet 0.75 euklidska 521 795 926 94.3

kosinusna  88.0 97.5 100.0 100.0

SSMOT RelD euklidska  86.6 97.5 100.0 100.0
ImageNet kosipusna 58.7 85.2 94.3 98.4
OSNet 1.0 euklidska  50.0 82.8 91.8 959
SSMOTRD (IR 6 039 1000 1000
ImageNet kosipusna 51.5 71.9 89.3 94.3
ResNet50 euklidska  50.6 77.0 89.3 95.9
SSMOT RelD kosinusna  80.6 94.3 99.2 100.0

euklidska  80.4 92.6 98.4 100.0

U pravilu se pokazalo da korisStenje kosinusne sli¢nosti pri pretrazi u galeriji daje bolje
rezultate u odnosu na euklidsku udaljenost, §to je osobito izraZeno kod modela evaluiranih

izravno s ImageNet teZinama. Mogudi razlog tome je Sto kosinusna sli¢nost naglasava kutnu
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sli¢nost izmedu vektora te je, za razliku od euklidske udaljenosti, manje osjetljiva na razlike
u njihovoj magnitudi koje ne moraju nuzno ukazivati na razliCite identitete. Nadalje, do-
datno treniranje na SSMOT RelD skupu znacajno poboljSava performanse svih modela, $to
potvrduje vaznost prilagodbe na specifi¢cnu domenu primjene.

OSNet modeli, koji su prilagodeni zadatku reidentifikacije, pokazuju bolje performanse
od opéeg ResNet modela, a razlika je posebno izraZzena u mAP vrijednostima. Primjerice,
uz kosinusnu sli¢nost, OSNet 1.0 postize mAP od 88.7, OSNet 0.75 od 88.0, dok ResNet50
ostvaruje 80.6, Sto jasno pokazuje prednost OSNet arhitekture. Navedeni rezultati ukazuju
na to da OSNet modeli dosljednije rangiraju pozitivne uzorke viSe u listi rezultata, Sto ih
¢ini pouzdanijima u scenarijima gdje je vazno osigurati precizno rangiranje svih relevantnih
uzoraka. U kontekstu pracenja plovila, to zna¢i da model visoko rangira sva pojavljivanja
istog plovila, Sto je vrlo vazno kada se koraku asocijacije za danu putanju koriste znacajke
plovila iz viSe prethodnih vremenskih trenutaka. S druge strane, Rank-1 metrika pokazuje
koliko Cesto sustav odmah odabire ispravan identitet, Sto je kljucno za izbjegavanje pogres-
nih dodjela identiteta, budu¢i da MOT algoritmi obi¢no biraju najvjerojatnije kandidate za
nastavak pracenja. Od razmatranih modela, OSNet 0.75 postiZe najbolju vrijednost Rank-1
metrike od 97.5.

KoriStenjem zahtjevnijeg scenarija pretrage s proSirenom galerijom koja sadrzi 1138
slika, vrijednosti ReID metrika ocekivano su loSije, buduéi da veéi broj kandidata oteZava
pronalazak pozitivnih primjera za dani upit. Tablica 6.3 prikazuje utjecaj proSirenja gale-
rije na performanse odabranih ReID modela, pri ¢emu svi modeli koriste kosinusnu mjeru
sli¢nosti prilikom rangiranja. I ovdje vrijede prethodna zapaZanja: OSNet arhitekture 1 dalje
nadmasuju ReSNet50, a domenski prilagodeni modeli imaju bolje performanse od modela
s teZinama naucenim na ImageNet-u. U slucaju proSirene galerije najbolje rezultate postiZe
OSNet 1.0 treniran na SSMOT RelD skupu, s mAP vrijednoS¢u od 82.8 i Rank-1 rezultatom
od 95.1. Slika 6.5 prikazuje Sest najbolje rangiranih primjera (Top-6) iz proSirene galerije
za dva upita (oznacena lijevo), dobivenih razli¢itim ReID modelima. Rezultati OSNet 1.0
modela s kosinusnom mjerom sli¢nosti usporedeni su s onima temeljenima na euklidskoj
udaljenosti. Nadalje, prikazani su i TOP-6 rezultati OSNet 1.0 modela s ImageNet teZinama,
kao 1 usporedbe s OSNet 0.75 te ResNet50 modelom. Zelenim okvirom oznaceni su pozitivni
primjeri Ciji identitet odgovara identitetu upita, dok su crvenim okvirom oznaceni negativni
primjeri. Iz danih primjera jasno je vidljiv zaostatak ImageNet modela za onima treniranim
na SSMOT RelD podacima: kod drugog upita ImageNet model prvi pozitivan primjer stavlja
tek na Sestu poziciju, dok se kod prvog upita uopée ne pojavljuje u Top-6 rezultata.

Dodatni primjeri upita i pripadaju¢ih TOP-6 rangiranih rezultata iz proSirene galerije,

dobivenih razli¢itim modelima, prikazani su u Dodatku D.
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Tablica 6.3: Rezultati evaluacije RelD modela uz i bez prosirenja galerije.

Model Skup podataka Pr0s1rﬁna mAP Rank-1 Rank-5 Rank-10
galerija

ImageNet X 57.2 82.0 94.3 96.7

OSNet 0.75 v 47.5 76.2 91.0 94.3
X 88.0 97.5 100.0 100.0

SSMOT RelD 4 81.7 94.3 100.0 100.0

ImageNet X 58.7 85.2 94.3 98.4

OSNet 1.0 4 49.1 77.9 90.2 94.3
X 88.7 95.9 100.0 100.0

SSMOT RelD v 82.8 95.1 99.2 100.0

ImageNet X 51.5 77.9 89.3 94.3

ResNet50 v 41.8 72.1 84.4 88.5
X 80.6 94.3 99.2 100.0

SSMOT RelD v 759 918 975  100.0

TOP-6 rezultata

i S = - (euklidska sli¢nost)
= -'-;"‘cr::ﬂ‘x
illl -E- S | :_'h
o oy 4 k ~

—
4 4 J——j ResNet50
- — = (kosinusna sli¢nost)

OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
| (kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

OSNet 1.0
¢ | (euklidska slicnost)

@-ﬂg@-
--

IT'L ResNet50
= (kosinusna sli¢nost)

OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

OSNet 0.75
® (kosinusna sli¢nost)

Slika 6.5: Sest najbolje rangiranih rezultata u galeriji za dva upita, dobivenih razliitim
RelD modelima i mjerama slicnosti.
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7. VOc-SORT ALGORITAM PRACENJA S
POBOLJSANIM PERFORMANSAMA U SLUCAJU
DUGOTRAJNIH OKLUZIJA

Iako detekcija i reidentifikacija predstavljaju temeljne komponente sustava za pracenje plo-
vila, one same po sebi nisu dovoljne za osiguravanje konzistentnog identiteta objekata kroz
vrijeme. Detekcija djeluje na razini pojedinacnih okvira videozapisa te daje informaciju o
trenutnom poloZaju 1 klasi plovila u danom okviru. S druge strane, reidentifikacija procje-
njuje sli¢nost plovila koja se pojavljuju u razli¢itim okvirima videozapisa. No, bez dodatne
logike povezivanja opaZanja plovila iz razli¢itih okvira videozapisa, koja je dana algorit-
mom pracenja, nije moguce uspostaviti stabilan kontinutet identiteta plovila kroz vrijeme.
To je nuzno jer bez takvog kontinuiteta sustav ne moze izvuci smislene informacije o putanji
1 ponasanju pojedinih plovila, niti prepoznati odstupanja u njihovom ponasanju, Sto je od
presudne vaznosti za nadzor, sigurnost i analizu pomorskog prometa.

Unato¢ znacajnom napretku postignutom u domeni automatskog praéenja, postojeci al-
goritmi i dalje se suoCavaju s izazovima kada je objekt koji se prati odredeni vremenski
period zaklonjen. Dok vodece metode pracenja obi¢no mogu uspjesno rijesiti problem krat-
kotrajnih okluzija, dugotrajne okluzije i dalje ozbiljno naruSavaju stabilnost pracenja te ¢esto
rezultiraju gubitkom putanja, pogresnim dodjelama identiteta ili fragmentacijama putanja.
Problem dugotrajnih okluzija posebno je izraZen u kontekstu pracenja plovila, gdje dinamika
scene obi¢no ukljucuje medusobna zaklanjanja objekata razliCitih dimenzija. Manja plovila
mogu na dulje vrijeme potpuno nestati iza vecih, ¢ime se stvaraju dugotrajne okluzije koje
nadilaze moguénosti postojecih algoritama.

Kako bi se prevladala ogranicenja postoje¢ih metoda, razvijen je VOc-SORT (Vessel
Occlusion SORT) algoritam za pracenje plovila, utemeljen na klasi¢nom pristupu pracenja
temeljenom na detekciji, ali proSiren nizom ciljanih prilagodbi koje zajednicki doprinose nje-
govoj vecoj otpornosti na dugotrajne okluzije. PredloZeni algoritam uvodi domensko znanje
u postupak odlucivanja o uklanjanju izgubljenih putanja te poboljSava proces asocijacije de-
tekcija i postojeéih putanja koriStenjem dvostupanjske metode povezivanja. U prvoj fazi
asocijacije vizualne se znaCajke kombiniraju s geometrijskima kako bi se pouzdano pridru-
zili jasni parovi putanja i detekcija, dok se u drugoj fazi za povezivanje preostalih, nejasnih

sluCajeva integriraju vizualne i dinamicke znacajke, ¢ime se omogucuje robusna reasocija-
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cija u uvjetima okluzija, nestabilnih detekcija i naglih promjena kretanja. Time VOc-SORT

doprinosi ublaZavanju odredenih ograni¢enja postoje¢ih metoda i povecava stabilnost prace-
nja u zahtjevnim pomorskim scenama, zadrzavajuéi pritom jednostavan i praktican dizajn.
Duboki modeli koriste se isklju¢ivo za detekciju i izdvajanje vizualnih znacajki, dok ostatak
algoritma ostaje minimalno racunski zahtjevan ¢ime se postiZe uravnoteZen odnos izmedu
racunske ucinkovitosti i kvalitete samog praéenja.

U ovom se poglavlju najprije predstavlja dizajn predloZenog algoritma pracenja, pri cemu
se isticu i detaljno opisuju kljucne prilagodbe u odnosu na postojece metode te se daje pre-
gled osnovnih koraka samog algoritma. Nakon toga slijedi usporedba performansi predlo-
Zenog algoritma s relevantnim postoje¢im metodama pracenja. Zatim se provodi ablacijska
studija u kojoj se analizira doprinos pojedinih komponenti algoritma - koriStenog detektora,
modela za ekstrakciju vizualnih znacajki, dodatnog kriterija za uklanjanje putanja te nacCina
asocijacije putanja i detekcija, zajedno s pripadnim pragovima vizualne slicnosti. Poglavlje
zavrSava raspravom u kojoj se interpretiraju dobiveni rezultati i istiCu prednosti, ali i ograni-

¢enja predloZzenog algoritma.

7.1. Dizajn VOc-SORT algoritma

U nastavku je detaljno opisan predlozeni VOc-SORT algoritam pracenja, zajedno sa svim
njegovim sastavnim koracima. Detaljno je pojasnjen nacin na koji se informacije dobivene
detektorom, modelom za ekstrakciju znacajki i Kalmanovim filterom medusobno integri-
raju kako bi se osigurao stabilan kontinuitet identiteta plovila, ¢ak i u uvjetima dugotrajnih

okluzija.

7.1.1. Kljucne prilagodbe u odnosu na postojece metode

Kako bi se smanjila osjetljivost algoritma praenja na dugotrajne okluzije koje uzrokuju pre-
kid putanja i gubitak identiteta plovila, VOc-SORT uvodi niz modifikacija usmjerenih na
povecanje robusnosti sustava upravo u takvim situacijama. Naglasak je na omogucavanju
pouzdane ponovne identifikacije plovila nakon duljih razdoblja bez opaZanja i na smanjenje
pogreske u koraku asocijacije. Sljedece prilagodbe Cine kljucne razlike predloZenog algo-

ritma u odnosu na postojece pristupe.

1. Produljeno vrijeme zadrzavanja izgubljenih putanja

U vecini standardnih algoritama pracenja putanja se zadrzava vrlo kratko vrijeme nakon
Sto joj je posljednji put bila pridruZena detekcija, obi¢no oko 30 uzastopnih okvira [67, 61,
66, 152] ili ¢ak krace [58, 27]. Prag zadrzavanja putanja od 30 okvira moZe biti dovoljan
za kratkotrajne okluzije, ali je nedostatan u scenarijima pracenja plovila, gdje objekti Cesto

ostaju zaklonjeni znatno dulje.
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Kako bi se omoguéila pouzdana rekonstrukcija putanja plovila i nakon dugotrajnih pre-

kida vidljivosti, u VOc-SORT algoritmu znatno je produljeno vremensko razdoblje tijekom
kojega se putanja zadrzava i u odsutnosti detekcija. Novi prag od 625 okvira odgovara raz-
doblju od 25 sekundi pri standardnoj frekvenciji od 25 FPS, §to je znacajan porast u odnosu
na otprilike 1.2 sekunde koliko dopustaju standardne implementacije. Time algoritam pos-

taje tolerantniji na dulje okluzije i smanjuje se vjerojatnost nepotrebnog prekida putanja.

2. Dodatni Kkriterij upravljanja putanjama temeljen na domenskom znanju

Uz osnovno pravilo brisanja putanja nakon §to im 625 uzastopnih okvira nije pridruZena
detekcija, uveden je i dodatni kriterij koji koristi domensko znanje o uobicajenom kretanju
plovila u promatranoj luci. Ako putanja pet uzastopnih okvira ne dobije niti jednu pridruzenu
detekciju, a posljednja detekcija koja joj je pridruZena nalazi se u blizini lijevog ili desnog
ruba kadra, putanja se odmah uklanja. Ovakva situacija naj¢eS¢e upuéuje na to da je plovilo
napustilo vidno polje kamere, pa se brZzim uklanjanjem takvih putanja sprjecCava bespotrebno
gomilanje izgubljenih putanja i smanjuje mogucnost pogres$nih asocijacija u narednim ok-
virima. Prije ranijeg uklanjanja provodi se provjera staticnosti putanje. Ako je plovilo bilo
prakticki nepomicno, putanja se ne uklanja nakon samo pet izostanaka detekcije. Time se
sprjecava pogresno uklanjanje putanja koje pripadaju privezanim plovilima u dijelu luke uz
lijevi rub kadra (kao na primjeru sa Slike 7.1), a koja privremeno mogu biti zaklonjena dru-

gim objektima.

Slika 7.1: Primjer privezanog plovila u luci smjestenog uz lijevi rub kadra, koje ¢e u
narednim okvirima biti zaklonjeno drugim prolaznim plovilom te zbog toga privremeno
nece biti detektirano.

3. Dvostupanjska VG-VD asocijacija detekcija i putanja

U okviru predloZzenog VOc-SORT algoritma uveden je postupak poboljSane dvostupanjske

asocijacije, nazvan VG-VD (Vizualno Geometrijska - Vizualno Dinamicka) asocijacija,
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koji objedinjuje komplementarne izvore informacija pri povezivanju postojecih putanja i no-

vih detekcija.

Prva faza asocijacije objedinjuje IoU udaljenost, kao geometrijski pokazatelj prostornog
preklapanja detekcije i predvidanja dane putanje, te kosinusnu udaljenost vektora znacajki
koji opisuju njihovu vizualnu sli¢énost. Nasuprot tome, druga faza asocijacije kombinira ko-
sinusnu udaljenost vizualnih znacajki s Mahalanobisovom udaljenoséu, koja opisuje koliko
je detekcija konzistentna s ocekivanom dinamikom kretanja praenog objekta, pri Cemu se u
obzir uzima 1 nesigurnost modela kretanja. Takva kombinacija omogucuje uspjesSno povezi-
vanje i u slucajevima kada je prostorno preklapanje slabo ili nepostojeée, primjerice nakon
okluzija ili naglih pomaka, ¢ime se nadopunjuju ograni¢enja prve faze i poveava ukupna
robusnost asocijacije.

Neka je 7 ={T,...,T,} skup postojecih putanja, a D, = {Dy,...,D,,} skup detekcija u
okviru ¢ danog videozapisa. U nastavku se oznaka d; ; koristi kao pokrata za d(7;,D;), gdje
je d odabrana mjera udaljenosti, 7; € 7 i D; € D.

Prva faza asocijacije (VG)

Cijena pridruZivanja C| (T;, D;) detekcije D; putanji 7; u prvoj fazi asocijacije dana je s:

C\(T;, D)) = i’ + i’ (7.1)
gdje je
1 . loU
. 5d<%, akoje (di% < ©,;5) A (d;% <0y,
deos = ) 2407 akode (i < O] AT < Onow). (12)
1, inace

Pritom df?s oznaCava kosinusnu udaljenost vektora znaCajki detekcije D; i eksponencijalnog

pomicnog prosjeka vektora znacajki detekcija pridruZenih putanji 7;, a dl{ ‘;U

predvidenog graniCnog okvira putanje 7; i graniCnog okvira detekcije D;. Pridruzivanja za

IoU udaljenost

koja vrijedi Cy > 0.8 odbacuju se jer ukazuju na izrazeno vizualno ili geometrijsko odstupa-
nje. Prag 07,y = 0.7 sluzi kao dodatno ogranicenje na preklapanja grani¢nih okvira, te isklju-
Cuje parove s nedostatnom prostornom podudarnoscu. S druge strane, 0,;; = 0.4 predstavlja
prag vizualne sli¢nosti kojim se odbacuju parovi sa znatno razli€itim vizualnim znacajkama.
Navedeni pragovi odabrani su temeljem inicijalnih eksperimenata i kvalitativne procjene, te

ne predstavljaju nuZno optimalne vrijednosti.

Druga faza asocijacije (VD)

U drugoj fazi asocijacije neuparene putanje i detekcije iz prve faze pokuSavaju se joS jednom
povezati, ali sada koristeci cijenu C>(7;,D;) pridruZivanja detekcije D; € D putanji T; € 7.
Ova cijena kombinira vizualnu udaljenost d; jc"s s konzistentno$¢u dinamike kretanja objekta
MhD
di.j

opisanom Mahalanobisovom udaljenos$éu , prema [62]. Funkcija cijene definirana je na
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sljedeci nacin:

oo, ako je dMhP > ¢
(T, Dj) = 15 Gy = Bnb (13)
Ad €+ (1= N)dMP, inace

gdje je vizualna udaljenost d; ;*”* dana s:

. cos .
gt o5 _ 2, ako je dl-,j > 0, | 7.4)
i, o )

dﬁ?s, inace

pri cemu dﬁ?s , kao i u prvoj fazi, oznacava kosinusnu udaljenost vektora znacajki detekcije
D; i eksponencijalnog pomicnog prosjeka vektora znacajki detekcija pridruzenih putanji 7;.

U implementaciji VOc-SORT algoritma koristi se A = 0.98 kojim se naglasak stavlja na
vizualnu sli¢nost, dok se Mahalanobisova udaljenost koristi kao dopunski uvjet konzistent-
nosti. Grani¢na vrijednost 837,p jednaka je vrijednosti 95%-tnog kvantila > distribucije s
cetiri stupnja slobode, koji iznosi 9.4877, te se koristi za odbacivanje pridruZivanja detek-
cija putanjama koja nisu dinamicki konzistentna s njihovim prethodnim kretanjem'. Prag
vizualne sli¢nosti, 0,;,, i u drugoj fazi asocijacije postavljen je na vrijednost 0.4.

Vrijednost d%-hD iz jednadZbe (7.3) kvadrat je Mahalanobisove udaljenosti [138] koji
mjeri uskladenost nove detekcije D; i predvidanja za putanju 7; dobivenog Kalmanovim

filterom. Definirana je izrazom:
d!'” = (D;—2,)"S7'(D; — ), (7.5)

gdje je Z; projekcija predvidenog stanja X; putanje 7; u prostor mjerenja, a S; pripadna matrica

kovarijance pogreSke predvidanja u tom prostoru. Z; i S; dane su sljede¢im relacijama:
2, =HxX;, Si=HPH' +R, (7.6)

pri ¢emu sve matrice dolaze iz Kalmanovog filtera: H je matrica koja preslikava vektor
stanja u prostor mjerenja, P; je matrica kovarijance pogreske predvidenog stanja, a R matrica
kovarijance mjernog Suma detektora.

Mahalanobisova udaljenost omoguduje da se svako odstupanje detekcije od predvidenog
stanja putanje vrednuje u odnosu na sigurnost Kalmanovog filtera za dano predvidanje: ako
je model siguran u svoje predvidanje, prihvatljiva su samo mala odstupanja, a u sluajevima
vece nesigurnosti toleriraju se i veca odstupanja. Ovo je posebno vazno u sluc¢aju dugotrajnih

okluzija, tijekom kojih nisu dostupna nova mjerenja za korekciju vrijednosti Kalmanovog fil-

'Buduéi da se dinamicka konzistentnost procjenjuje nad prostorom mjerenja koji obuhvaca etiri kompo-
nente grani¢nog okvira: dvije koordinate njegovog sredista (x.,y.), Sirinu w i visinu A, test odbacivanja se
temelji na > distribuciji s etiri stupnja slobode [320].
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tera, Cime se njegova nesigurnost u dana predvidanja postupno povecava. Kako nesigurnost

raste, tako se povecava i podrucje prihvatljivih vrijednosti Mahalanobisove udaljenosti, $to
algoritmu omogucuje da nakon duzeg izostanka detekcija prihvati detekciju koja je mozda
znatnije udaljena od pocetnog predvidanja. Time se povecava vjerojatnost ispravne reidenti-

fikacije plovila kada se ono ponovno pojavi nakon duljeg perioda zaklonjenosti.

4. OSNet RelD model treniran na domeni plovila

Za ekstrakciju vizualnih znacajki koristi se OSNet 1.0 RelD model, dodatno treniran na
SSMOT podskupu za reidentifikaciju kako bi se poboljsala kvaliteta dobivene vizualne repre-
zentacije dodatnom prilagodbom specificnostima izgleda plovila u promatranoj luci. Time
se izbjegavaju ogranicenja op¢ih modela koji su najcesée treniranih na skupovima podataka s
pjesacima, a zbog znatnih razlika u vizualnim obiljezjima plovila i pjeSaka obi¢no ne mogu
pouzdano razlikovati pojedina plovila. Dodatnim treniranjem RelD modela na domeni od
interesa postize se ve€a diskriminativnost dobivenih znacajki, Sto izravno doprinosi boljim

performansama algoritma pracenja te stabilnijem odrZavanju identiteta objekata koji se prate.

5. Veci prag tolerancije na udaljenost vizualnih znacajki

Zbog mogucih promjena u izgledu plovila nakon okluzije (djelomi¢na zaklonjenost, razli¢ita
orijentacija ili sli¢no), koristi se neSto veca grani€na vrijednost vizualne udaljenosti od 0.4
za prihvatljiva pridruZivanja novih detekcija i postojecih putanja, dok se u postoje¢im imple-
mentacijama popularnih algoritama uobicajeno primjenjuju niZe vrijednosti od ~ 0.2 — 0.3
[61, 62, 63].

7.1.2. Opis koraka algoritma

Slijedi pregled svih koraka predloZzenog VOc-SORT algoritma, od inicijalne detekcije plovila
pa sve do koraka upravljanja putanjama. Kako bi se dobio Sto jasniji uvid u samu strukturu
i nacin rada algoritma, dijagramom toka na Slici 7.2 prikazani su odnosi medu navedenim

koracima i klju¢ne odluke u procesu pracenja.

Detekcija

Za lokalizaciju 1 klasifikaciju plovila u svakom okviru videozapisa u fazi detekcije koristi
se YOLO11m [288] detektor, opisan u Poglavlju 5, koji je treniran na SSMOT skupu poda-
taka. Odabrani detektor generira grani¢ne okvire i pripadajuce vrijednosti pouzdanosti za sva
plovila prisutna u sceni, ¢ime se osigurava pocetna informacija potrebna za daljnje korake
algoritma pracenja. Treniranje na SSMOT podskupu za detekciju omogucuje prilagodbu de-
tektora specificnostima dinamike pomorskog prometa u splitskoj luci, ¢ime se postize veca

preciznost i robusnost detekcija u stvarnim uvjetima nadzora plovila u toj luci.
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Ekstrakcija vizualnih znacajki

Za potrebe reidentifikacije plovila i poboljSanja robusnosti algoritama praenja u uvjetima
dugotrajnih okluzija, nakon detekcije provodi se ekstrakcija vizualnih znacajki svakog detek-
tiranog plovila. U tu svrhu koristi se OSNet 1.0 [228] reidentifikacijski model, koji je u Po-
glavlju 6 pokazao bolje performanse od opeg ResNet modela. Model je treniran na SSMOT
RelD skupu podataka, Cime je osigurana prilagodenost karakteristikama plovila prisutnim u
stvarnim uvjetima nadzora. OSNet 1.0 generira 512-dimenzionalne diskriminativne vektore
znacajki koji opisuju vizualni izgled svakog plovila, ¢ime omogucuje razlikovanje plovila

vrlo sli¢énog izgleda 1 olakSava ponovno povezivanje putanja nakon razdoblja bez detekcija.

Predvidanje sljedece pozicije objekta

Predvidanje buduceg poloZaja objekta vazan je korak u algoritmima praéenja jer omogucuje
zadrzavanje kontinuiteta putanja cak i u trenutcima kada detektor privremeno ne uspijeva lo-
kalizirati plovilo. U implementaciji predlozenog VoC-SORT algoritma za ovaj korak koristi
se Kalmanov filter (KF) [26] s vektorom stanja

X= (XC, Ye, W, h7 xm yC7 W, h); (77)

gdje su (xc, y.) koordinate srediSta grani¢nog okvira, w i h njegova $irina i visina, a kom-
ponente X, y., W, h predstavljaju stope promjene poloZaja i dimenzija grani¢nog okvira u
vremenu. Na ovaj nacin omoguéena je istovremena procjena poloZaja i dinamike gibanja
objekta.

Predvidanje se temelji na linearnom modelu gibanja, pri cemu Kalmanov filter koristi
informacije o prethodnom stanju, kako bi procijenio ocekivanu poziciju i veli¢inu plovila u
trenutnom okviru videozapisa (KF . predict na vizualizaciji sa Slike 7.2). To u ovom slucaju
nije ogranicavajuce jer se promjene polozZaja plovila izmedu uzastopnih okvira videozapisa
obi¢no odvijaju postepeno, bez naglih pomaka, pa ih linearni model moze dovoljno dobro
aproksimirati. Cak i kada plovilo znaajno mijenja smjer, ta se promjena odvija kroz veéi
broj uzastopnih okvira, §to omogucéuje Kalmanovom filteru da je pravovremeno registrira i
prilagodi svoje procjene. U slucaju da detekcija izostane, predvidanje Kalmanovog filtera
koristi se za priviemenu procjenu pozicije plovila, ¢ime se sprjecava trenutni prekid putanje

1 omogucuje odrZavanje njezina kontinuiteta.

Asocijacija i koriStene mjere sli¢nosti

Jedna od glavnih razlika predloZenog VOc-SORT algoritma u odnosu na postojeée metode
je unacinu povezivanja detekcija s postoje¢im putanjama koji omogucuje robusnije pracenje

1 u uvjetima dugotrajnih okluzija.
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Kako bi se nove detekcije iz trenutnog okvira videozapisa povezale s postojeéim puta-

njama koristi se dvostupanjska VG-VD asocijacija predstavljena ranije u 7.1.1. U prvoj fazi
asocijacije cilj je utvrditi najpouzdanija pridruzivanja izmedu detekcija i postojecih putanja,
odnosno parove koji su istovremeno prostorno blizu i vizualno vrlo sli¢ni. Za to se koristi
madarski algoritam [140] s cijenom pridruzivanja Cj, definiranom jednadzbom (7.1), koja
spaja IoU udaljenost i kosinusnu udaljenost vizualnih znacajki u jedinstvenu metriku teme-
ljem koje se donosi odluka o optimalnom povezivanju putanja i detekcija.

Detekcije 1 putanje koje nisu uspjeSno povezane u prvoj fazi, prosljeduju se u drugu fazu
asocijacije u kojoj ih se ponovno pokuSava povezati madarskim algoritmom, ali sada kom-
binirajuci kosinusnu udaljenost vizualnih znacajki s Mahalanobisovom udaljenos¢u u cijeni
pridruZivanja C; iz (7.3). U situacijama kada se objekt ponovno pojavljuje nakon okluzije,
IoU viSe ne pruza korisnu informaciju zbog izostanka preklapanja, a sama kosinusna uda-
ljenost nije dostatna jer vizualne znacajke nakon okluzija ili u prisutnosti vizualno slicnih
plovila mogu postati nepouzdane i dovesti do veeg broja zamjena identiteta. Stoga druga
faza asocijacije kombinira kosinusnu udaljenost s veCom grani¢nom vrijednoscu 0.4, koja
omoguduje povezivanje istog objekta i u slucaju odredenih odstupanja u vizualnom izgledu,
zajedno s Mahalanobisovom udaljenos¢u koja provjerava je li nova detekcija dinamicki us-
kladena s oCekivanim poloZajem putanje, ¢ime se smanjuje rizik od pogreSnih dodjela iden-
titeta pri ponovnom pojavljivanju objekta nakon okluzije. Time se postiZe ravnoteza: prva
faza sprjeCava pogreSne asocijacije, a druga faza smanjuje fragmentaciju putanja nakon du-
gotrajnih okluzija.

Nakon dvije faze asocijacije u kojima se postoje¢im putanjama nastoje pridruZiti nove
detekcije, slijedi dodatna faza asocijacije u kojoj se preostale neuparene detekcije pokusavaju
povezati s nepotvrdenim putanjama koje su joS u probnom razdoblju. U ovoj fazi takoder se
primjenjuje madarski algoritam, koristeci istu funkciju cijene pridruzivanja Cy kao i u prvoj

fazi asocijacije, ali s duplo manjom grani¢nom vrijednosti 0,;;.

Upravljanje putanjama

Upravljanje putanjama obuhvaca azuriranje stanja postojecih putanja kojima je uspjesno pri-
druZena nova detekcija plovila, uklanjanje neaktivnih putanja te inicijalizaciju novih putanja

za neuparene detekcije.

AZuriranje stanja putanja

Kada je putanji 7; € 7 uspjeSno pridruZena detekcija D; € D plovila iz trenutnog okvira F;
danog videozapisa, provodi se korak korekcije Kalmanovog filtera (KF . update na Slici 7.2),

pri emu se procjena stanja putanje i pripadajuca matrica kovarijance pogreske procjene azu-
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riraju temeljem novog mjerenja D ;. Potom se azuriraju i reidentifikacijske znacajke putanje

(features.update na Slici 7.2). Kao vizualna informacija putanje 7; koristi se eksponen-
cijalni pomicni prosjek:
e = +(1-a)f;, (7.8)

gdje je f; vektor znaCajki nove detekcije D; koja je u okviru F; pridruzena putanji T;, a
o = 0.9 faktor izgladivanja. Eksponencijalni pomic¢ni prosjek integrira vizualne informacije
sadrZane u uzastopnim okvirima videozapisa smanjujuéi Sum prisutan u detekcijama, ¢ime

se poboljSava kvaliteta asocijacije uz smanjenu vremensku potrosnju [62].

Uklanjanje putanja

Ako broj uzastopnih okvira u kojima putanji 7; € 7 nije pridruzena detekcija premasi zadani
prag max_age = 625, objekt se smatra izgubljenim, te se putanja uklanja iz skupa 7. Na-
dalje, u slucaju da tijekom 5 uzastopnih okvira putanji nije pridruzena niti jedna detekcija, a
posljednja detekcija pridruZena toj putanji nalazi se u neposrednoj blizini lijevog ili desnog
ruba okvira te se ne radi o stati¢cnom objektu koji bi mogao predstavljati plovilo privezano u

luci, putanja se uklanja odmah, bez ¢ekanja isteka praga max_age.

Inicijalizacija putanja

Kada se u okviru pojavi detekcija koja nije pridruZena niti jednoj postojecoj putanji, ona se
prvo dodaje u skup probnih, nepotvrdenih putanja U. Te putanje sluze kao privremeni kan-
didati te jo$ ne ulaze u glavni skup putanja 7. Ako se istoj putanji iz U detekcija uspjesno
pridruZi i u sljede¢em uzastopnom okviru, putanja se smatra potvrdenom i inicijalizira se kao
nova aktivna putanja u 7 ako je pouzdanost detekcije veca od a = 0.6. Suprotno tome, ako
u idué¢em okviru ne dode do uspjeSnog pridruZivanja, probna se putanja uklanja iz skupa U.
Na taj se nacin osigurava da se nova putanja kreira tek kada postoji potvrda pojave objekta
u dva uzastopna okvira, ¢ime se smanjuje moguénost stvaranja putanja temeljenih na lazno

pozitivnim detekcijama.

7.2. Usporedba performansi predloZenog algoritma s

postojec¢im metodama

Procjena ucinkovitosti predlozenog VOc-SORT algoritma provedena je usporednom anali-
zom s reprezentativnim algoritmima temeljenim na detekciji, koji predstavljaju vodeéi pris-
tup rjeSavanju zadatka pracenja vise objekata [147, 148]. Cilj ovog potpoglavlja je prikazati
u kojoj mjeri predlozene inovacije doprinose poboljSanju performansi u odnosu na postojece
metode, posebno u zahtjevnim scenarijima dugotrajnih okluzija.

Usporedba je provedena nad skupom algoritama Cije su referentne implementacije dos-

tupne u BoxMOT okviru [321], standardiziranom sustavu otvorenog koda koji okuplja suvre-
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Slika 7.2: Dijagram toka predloZenog VOc-SORT algoritma.
mene predstavnike algoritama pradenja viSe objekata. Primjena ovog okvira omoguduje eva-

luaciju svih metoda u jedinstvenom i reproducibilnom eksperimentalnom okruzZenju, ¢ime se

uklanjaju implementacijske razlike i osigurava objektivna usporedba njihovih performansi.
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7.2.1. Koristene metrike

Za evaluaciju razlicitih metoda pracenja koriSten je standardizirani evaluacijski okvir Trac-
kEval [322], koji omogucuje ujednacenu i reproducibilnu procjenu performansi algoritama
na temelju Siroko prihvac¢enih metrika, ukljuCuju¢i CLEAR MOT [153] metrike MOTA 1
MOTP, HOTA metriku [154], IDF1 metriku [155], te IDSW [142] metriku. Detaljan opis
navedenih metrika dan je u Poglavlju 2, u dijelu 2.4.1.

Uz prethodno navedene metrike, koristi se i FPS (engl. Frames Per Second) mjera, koja
daje uvid u brzinu izvodenja algoritma pradenja. Pri tome je vazno naglasiti da vrijeme
potrebno za detekciju nije ukljuceno u FPS, jer su detekcije za sve videozapise unaprijed
generirane odabranim detektorom, te se tijekom evaluacije samo ulitavaju bez ponovnih
izraCuna. Na taj se nacin ubrzava proces evaluacije i omogucuje konzistentna usporedba
performansi razli¢itih algoritama pracenja.

Kako bi se ocijenila uspjesSnost modela u ponovnoj identifikaciji objekata nakon oklu-
zije, uvodi se OKL™ metrika. Za njezin izra¢un najprije je potrebno za svaku anotiranu oklu-
ziju identificirati posljednju dostupnu detekciju zaklonjenog plovila u zadanom vremenskom
prozoru prije pocCetka stvarne okluzije, a zatim i prvu ponovnu detekciju u odgovaraju¢em
prozoru nakon okvira koji oznacuje njezin stvarni zavrSetak. Uvodenje ovih prozora nuzno
je zbog ogranicenja detekcijskih modela, koji Cesto ne uspijevaju pouzdano detektirati dje-
lomi¢no zaklonjene objekte neposredno prije ulaska u okluziju i neposredno nakon izlaska
iz nje. U ovoj analizi primjenjuje se vremenski prozor od 75 okvira prije i 75 okvira nakon
okluzije, Cime se osigurava dovoljna tolerancija na izostanke detekcija uslijed ogranicenja
detektora. Vrijednost OKL™' metrike odgovara broju uspjesno reidentificiranih objekata na-
kon okluzije, pri ¢emu se reidentifikacija smatra uspjeSnom ako je objekt detektiran i prije i
nakon stvarnog razdoblja okluzije te ako je algoritam pracenja zadrzZao konzistentan identi-

fikator u oba promatrana detekcijska trenutka.

7.2.2. Rezultati evaluacije

Kako bi se uklonile razlike u performansama koje proizlaze iz koriStenja razlicitih detektora
1 ekstraktora vizualnih znacajki, svi algoritmi koriste iste modele za detekciju 1 ekstrakciju
znacajki kao 1 predloZzeni VOc-SORT algoritam. Konkretno, svi modeli kao polaznu tocku
pracenja koriste iste detekcije dobivene YOLO11m detektorom treniranim na SSMOT skupu
podataka za detekciju. U sluCajevima kada algoritam praéenja koristi vizualne znacajke, nji-
hova ekstrakcija provodi se pomocu OSNet 1.0 modela treniranog na SSMOT RelD skupu
podataka. Osim toga, za sve algoritme produljeno je vrijeme prije brisanja izgubljenih puta-
nja na 625 okvira kako bi im se pruzila moguénost uspjeSnog nastavka praenja objekata i
nakon duljih okluzija.
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Kvantitativna analiza

U Tablici 7.1 prikazani su rezultati kvantitativne evaluacije predloZenog algoritma i1 oda-
branih postoje¢ih metoda pradenja na SSMOT videozapisima. Simbol "v" u stupcu RelD
oznacuje da navedeni algoritam koristi reidentifikacijski model za ekstrakciju vizualnih zna-
Cajki, dok simbol "X" naznacuje da algoritam ne koristi vizualne znacajke. Nadalje, strelica
""" uz nazive pojedinih metrika ukazuje na to da su poZeljne vece vrijednosti te metrike,
dok strelica "]" oznacuje da su povoljnije nize vrijednosti. Evaluacija je provedena na ra-
¢unalnom sustavu s procesorom Intel Core 17-9850H, 16 GB RAM-a i grafickom karticom
NVIDIA Quadro RTX 3000.

Tablica 7.1: Usporedna analiza performansi predloZenog VOc-SORT algoritma i postojecih
metoda pracenja na SSMOT skupu videozapisa.

HOTA MOTA MOTP IDSW IDF1 OKL"' FPS

Track RelD

racker ¢ ) ) ) “» oD DM
ByteTrack [60] X 82.55 92.51 89.30 80 89.63 7 201
BoT-SORT [61] v 82.80 92.95 89.83 61 88.89 10 14
StrongSORT [62] v 83.83 92.21 89.78 371 91.59 12 13
OC-SORT [27] X 82.72 92.37 89.89 122 89.58 13 188
Deep OC-SORT [152] v 82.59 92.61 89.88 95 89.03 7 15
BoostTrack [63] v 65.79 56.49 89.70 54 69.63 4 47
VOc-SORT v 85.57 93.03 89.82 42 94.38 25 14

Predlozeni VOc-SORT postize najvise vrijednosti HOTA (85.57), MOTA (93.03) i IDF1
(94.38) metrika, ¢cime nadmasSuje ostale metode pracenja prema klju¢nim identifikacijskim
1 asocijacijskim metrikama. U pogledu toCnosti lokalizacije objekata (MOTP), svi algo-
ritmi ostvaruju slicne vrijednosti, pri ¢emu najbolji rezultat postize OC-SORT (89.89). VOc-
SORT postize najmanji broj zamjena identiteta (42) tijekom pracenja te ostvaruje znatno
veli broj uspjesSnih reidentifikacija nakon okluzije (25/31) u odnosu na ostale algoritme. Po
pitanju brzine izvodenja, s najviSom vrijednosti FPS isticu se ByteTrack (201) i OC-SORT
(188) algoritmi, dok VOC-SORT postize 14 FPS, §to je usporedivo s ostalim metodama koje
koriste vizualnu reidentifikaciju. Generalno najslabije performanse pokazuje BoostTrack, s
HOTA vrijednoscu od tek 65.79 i MOTA vrijedno$¢u od 56.49.

Prikaz na Slici 7.3 (a) usporeduje odabrane algoritme koriste¢i HOTA i IDF1 metrike, pri
¢emu veli¢ina markera odrazava vrijednost MOTA metrike. VOc-SORT algoritam se vidno
izdvaja po vrijednostima HOTA 1 IDF1 metrika, slijedi ga StrongSORT algoritam koji se
takoder izdvaja po vrijednostima ovih metrika, dok su preostali algoritmi grupirani u uzem
rasponu vrijednosti. S druge strane, na Slici 7.3 (b) prikazan je odnos izmedu IDF1 me-
trike 1 broja zamjena identiteta (IDSW), pri ¢emu veli¢ina markera oznacava broj uspjeSnih

reidentifikacija nakon okluzije (OKL™). Rije¢ je o skupini izdvojenih identitetnih metrika

116



Poglavlje 7. VOc-SORT ALGORITAM PRACENJA S POBOLJSANIM
PERFORMANSAMA U SLUCAJU DUGOTRAJNIH OKLUZIJA

95 400
MOc-SORT ‘rongSORT
94 350 A
034 300
250 1

92 1
o ‘ongSORT =
a) %)
2] Q 200 A

91+

150
00 {-rtrd OC-SORT
yteTrad
i Deep OC-SORT,
D OC-SORT =-SORT 100 F “ ByteTrack
eep OC-!
89 BoT-SORT
BOT-SORT 50 (@ BoostTrack VOc-SORT
820 825 83.0 835 840 845 850 855 86.0 70 75 80 85 20 95
HOTA IDF1
(a) (b)

Slika 7.3: Vizualna usporedba performansi odabranih algoritama pracenja.

(a) HOTA-IDF1-MOTA: x-os HOTA, y-os IDF 1, velicina markera proporcionalna MOTA
(zbog preglednosti izostavljen BoostTrack algoritam koji postiZe znatno losije vrijednosti
odabranih metrika), (b) IDF1-IDSW-OKL™" : x-os IDF1, y-os IDSW, veli¢ina markera
proporcionalna OKL™.

koje zajednicki opisuju stabilnost i konzistentnost odrzavanja identiteta plovila kroz vrijeme.
VOc-SORT ostvaruje najmanji broj IDSW te najveci broj uspjesSnih reidentifikacija, uz naj-
viSu IDF1 vrijednost, ¢ime se jasno izdvaja od ostalih algoritama. StrongSORT postize
visoku vrijednost IDF1, ali uz znatno veci broj zamjena identiteta, dok BoostTrack pokazuje
najslabiju identitetsku stabilnost.

Kako bi se dobio uvid u sposobnost pojedinih algoritama pracenja da ispravno reidentifi-
ciraju objekt nakon okluzije ovisno o njezinom trajanju, na Slici 7.4 prikazan je broj uspjes-
nih reidentifikacija razvrstan po trima kategorijama okluzija definiranih u Poglavlju 4, dio
4.4.3: kratke, srednje duge i duge. Prikaz obuhvaca sve razmatrane algoritme i omogucuje
izravan uvid u njihove performanse za svaku od navedenih kategorija okluzija. U katego-
riji kratkih okluzija broj uspjesnih reidentifikacija krece se od Cetiri (BoostTrack) do devet
(StrongSORT i VOc-SORT), od ukupno 13 slucajeva. Kod srednje dugih okluzija vec¢ina
algoritama ostvaruje jednu do dvije uspjeSne reidentifikacije, dok je kod dugih okluzija taj
broj u rasponu od nula do tri. Izuzetak je predloZzeni VOc-SORT algoritam, koji u srednje

dugim ostvaruje sedam uspjeSnih reidentifikacija, a u dugim njih devet.

Kvalitativna analiza

U okviru evaluacije prikazana su i Cetiri vizualna primjera ponaSanja odabranih algoritama,
1 to predlozenog VOc-SORT algoritma te sljedeca tri algoritma koja su najbolje rangirana
prema vrijednosti HOTA metrike: StrongSORT, BoT-SORT i OC-SORT. Prvi primjer, pri-
kazan na Slici 7.5, odnosi se na scenu u kojoj je putnicki brod tijekom duljeg vremenskog
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Slika 7.4: Usporedba broja uspjesnih reidentifikacija po kategorijama okluzija predloZenog
VOc-SORT algoritma i postoje¢ih metoda.

razdoblja od gotovo jedanaest sekundi u potpunosti zaklonjen trajektom. VOc-SORT i Stron-
gSORT uspjesno rekonstruiraju ispravan identitet putni¢kog broda nakon zavrsetka okluzije.
Medutim, StrongSORT pri izlasku iz okluzije, dok je putnicki brod joS djelomic¢no zaklonjen,
privremeno dodjeljuje pogresan identitet, da bi mu tek nakon potpunog otkrivanja ponovno
pridruZio ispravan. Nasuprot tome, OC-SORT i BoT-SORT ne uspijevaju povratiti originalni
identitet putnickog broda nakon okluzije. S druge strane, StrongSORT i OC-SORT pogreSno
mijenjaju identitet trajekta nakon Sto je u prolazu djelomi¢no zaklonjen katamaranom, dok
VOc-SORT i BoT-SORT ispravno odrzavaju konzistentan identitet.

U preostalim vizualnim primjerima (Slike 7.6, 7.7, 7.8) zbog bolje preglednosti prikazani
su iskljucivo identiteti plovila. Oznake klasa viSe nisu istaknute, iako se grani¢ni okviri i
dalje razlikuju bojama prema pripadnosti pojedinoj klasi. Bududéi da su identiteti primarni
pokazatelj uspjeSnosti pracenja, dok su klase rezultat detekcijskog modela, ovakav prikaz
omogucuje lakSu usporedbu koliko dobro pojedini algoritmi odrZavaju ispravne identitete
plovila kroz vrijeme. Na slikama je za svaki od algoritama pracenja prikazan niz razlicitih
trenutaka iz danog videozapisa, koji su oznacenih brojevima 1-5 (Slika 7.6), odnosno 1-4
(Slika 7.7 1 Slika 7.8).

Slika 7.6 prikazuje scenu iz SSMOT_9 videozapisa u kojoj jedno plovilo, s poc¢etno dodi-
jeljenim identitetom 7, uzastopno ulazi u dvije okluzije: prvo u kratku okluziju u trajanju od
0.40 sekundi, a potom u srednje dugu okluziju od 6.91 sekundi. Nakon djelomi¢ne zaklonje-
nosti i preklapanja okvira plovila 7 s jedrilicom identiteta 2 (odnosno 12 u sluc¢aju OC-SORT
algoritma), u trenutku t = 2 VOc-SORT i BoT-SORT algoritmi uspijevaju odrZati ispravan
identitet plovila, dok OC-SORT i StrongSORT plovilu 7 dodjeljuju novi, pogresni identitet.
Nakon toga plovilo inicijalnog identiteta 7 ulazi u kratku okluziju s bijelom jedrilicom iden-

titeta 4. Pri izlasku iz okluzije u trenutku t = 3 jedino VOc-SORT uspijeva plovilu ponovno
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Slika 7.5: Primjer ponasanja odabranih algoritama pracenja (VOc-SORT, StrongSORT,
OC-SORT i BoT-SORT) na dijelu SSMOT_9 videozapisa s medusobnim preklapanjem
plovila i primjerom duge okluzije putnickog broda trajektom.

dodijeliti identitet jednak onome prije okluzije, dok preostali algoritmi u tome ne uspije-
vaju. Sli¢an obrazac se ponavlja i sa sljede¢om, srednje dugom okluzijom: jedino je kod
VOc-SORT algoritma identitet plovila u trenutku # = 5 nakon okluzije plovila katamaranom,
jednak identitetu netom pred okluziju u trenutku ¢ = 4.
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Slika 7.6: Primjer ponasanja odabranih algoritama pracenja (VOc-SORT, StrongSORT,
OC-SORT i BoT-SORT) na sceni iz SSMOT_9 videozapisa, u kojoj isto plovilo najprije ulazi
u kratku okluziju u trajanju od 0.40 s (iza bijele jedrilice), a zatim u srednje dugu okluziju u

trajanju od 6.91 s (iza katamarana).

Na Slici 7.7 prikazana je scena obiljeZena viSestrukim mimoilaZenjima i jednom potpu-
nom okluzijom. Algoritam VOc-SORT uspjesno odrzava identitete plovila 7 i 8 u prikazanoj
sceni, ¢ak 1 u trenutku ¢ = 4 njihova mimoilaZenja. Nasuprot tome, kod algoritama BoT-
SORT i OC-SORT u trenutku ¢+ = 4 dolazi do pogresne dodjele identiteta: plovilu kojemu
je ut =1 bio pridruZen identitet 7 dodijeljen je identitet plovila 8, s kojim se mimoilazilo.
Nadalje, plovilo identiteta 7 u t = 2 (identitet 22 u sluc¢aju OC-SORT algoritma), koje ulazi
u okluziju s jedrilicom, jedino VOc-SORT uspje$no ponovno identificira u trenutku # = 3.

Posljednji primjer, prikazan na Slici 7.8, obuhvaca scenu u kojoj je potrebno pratiti vise
vizualno gotovo identi¢nih plovila (trening jedrilica) koja se u kretanju medusobno prek-
lapaju. U trenutku # = 4 detektirane su tri od Cetiri jedrilice; nije detektirana ona koja je

gotovo potpuno zaklonjena. Za te tri vidljive jedrilice najtocnije identitete dodjeljuje algori-
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VOc-SORT

Slika 7.7: Prikaz vizualno zahtjevne scene iz videozapisa SSMOT _6 obiljeZene
preklapanjima, djelomicnim zaklonjenostima i mimoilaZenjima sli¢nih plovila, uz jednu
srednje dugu okluziju u trajanju od 3.24 s.

tam StrongSORT. Algoritam VOc-SORT zamjenjuje redoslijed identiteta 4 1 9 te u trenutku
t = 3 pogresno uvodi novi identitet 13. OC-SORT u ¢t = 4 takoder pogresno dodjeljuje novi
identitet (11). Najveée odstupanje pokazuje BoT-SORT, koji u trenutcima t =3 it = 4 po-
gre$no uvodi tri nova identiteta (17, 18 1 13) te identitet 5 pridruZuje neispravnom objektu.
Suprotno tome, jedino VOc-SORT uspijeva odrZati konzistentan identitet plovila ozna¢enog

Zutim okvirom (identitet 7 u trenutku ¢ = 1) kroz sva Cetiri prikazana trenutka.
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Voc-SORT

Slika 7.8: Primjer scene iz videozapisa SSMOT _12 koja zahtijeva pracenje vizualno gotovo
identic¢nih plovila s medusobnim preklapanjima.

7.3. Ablacijska studija

Ablacijska studija provodi se kako bi se ispitao utjecaj pojedinih komponenti predloZenog
algoritma na ukupne performanse pracenja. Kao polazna tocka koristi se implementacija
VOc-SORT algoritma opisana u 7.1. Sustavnim uklanjanjem, zamjenom ili modificiranjem
pojedinih elemenata algoritma procjenjuje se njihov utjecaj na ukupnu ucinkovitost prade-
nja, pri cemu se posebna pozornost posvecuje njihovoj sposobnosti uspje$ne reidentifikacije

plovila nakon srednje dugih 1 dugih okluzija.

7.3.1. Utjecaj koriStenog detektora

U okviru ove ablacijske studije prvo se ispituje utjecaj koriStenog detektora na ucinkovitost
VOc-SORT algoritma. U Tablici 7.2 prikazani su rezultati evaluacije algoritma pri primjeni
triju varijanti YOLO11 [288] detektora (YOLOI11n, YOLOI11s i YOLO11m), treniranih na
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SSMOT skupu podataka za detekciju, kako je opisano u poglavlju 5, dio 5.2.3. Na testnom

skupu SSMOT detekcijskog podskupa, detektor YOLO11m postigao je najviSu vrijednost
detekcijske metrike mAPs5p.95 od 0.829, zatim slijedi YOLOI11s s vrijednos¢u 0.799, dok
YOLOI11n ostvaruje najniZu vrijednost od 0.764. U skladu s tim, YOLOI11m ostvaruje i
najbolje rezultate kvantitativnih metrika pracenja na SSMOT videozapisima, nakon njega

slijedi YOLO11s, dok najmanji model YOLO1 1n postiZe najslabije rezultate.

Tablica 7.2: Usporedba performansi algoritma pracenja pri koristenju razlicitih varijanti
YOLOI1 detektora.

HOTA MOTA MOTP IDSW IDF1 OKL"
) ) ) (€] ) )
YOLOIIm 85.57 93.03 89.82 42 94.38 25

YOLOI1ls 8392 91.72  89.54 45 93.18 24
YOLOlln 8134 89.19  88.78 71 90.73 24

Na Slici 7.9 prikazana je usporedba broja uspjeSnih reidentifikacija za tri spomenute
varijante YOLOI11 detektora u odnosu na tri kategorije duljine okluzije. U kategoriji krat-
kih okluzija model praéenja koji koristi YOLO1 1n detektor ostvaruje najveci broj uspjesnih
reidentifikacija, njih 11, dok kod srednje dugih 1 dugih okluzija biljezi slabije rezultate u
odnosu na preostala dva detektora. YOLO11s i YOLO11m jednako su uspjesni u reiden-
tifikaciji plovila nakon kratkih i srednje dugih okluzija, dok YOLO11m ostvaruje najbolji

rezultat kada su u pitanju duge okluzije.
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Slika 7.9: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija pri koristenju razlicitih varijanti YOLOI11 detektora.
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7.3.2. Utjecaj integracije vizualnih RelD znacajki s

prostorno-dinamic¢kim informacijama

U ovom dijelu provedena je ablacijska analiza utjecaja integracije vizualnih ReID znacajki
u postupku asocijacije unutar predloZzenog algoritma pracenja. Analiza je usredotoCena na
ispitivanje doprinosa vizualnih znacajki u prvoj (A1) i drugoj (A2) fazi asocijacije, pri cemu
su razmatrane razlicite konfiguracije u kojima su te znacajke ukljucene ("v'") ili izostavljene
("X"). Usporedba je provedena uz zadrZavanje istih postavki ostalih komponenti sustava, s
ciljem izoliranja utjecaja vizualnih informacija na performanse praéenja, osobito u kontekstu
oCuvanja identiteta nakon okluzija.

Rezultati prikazani u Tablici 7.3 jasno ukazuju na utjecaj integracije vizualnih RelD zna-
Cajki u pojedinim fazama asocijacije na ukupne performanse pracenja. Najbolji rezultati
ostvareni su u konfiguraciji u kojoj su vizualne znacajke uklju¢ene u obje faze asocijacije,
pri c¢emu su postignute najviSe vrijednosti HOTA, MOTA i IDF1 metrika, uz istodobno naj-
manji broj zamjena identiteta. Izostavljanje vizualnih znacajki u prvoj fazi asocijacije, uz
njihovo zadrZavanje u drugoj fazi, rezultira tek umjerenim smanjenjem globalnih metrika
pracenja, dok se pritom zadrZava visok broj uspjesno reidentificiranih plovila nakon oklu-
zija. Suprotno tome, konfiguracije u kojima su vizualne znacajke izostavljene u drugoj fazi
asocijacije biljeZe izraZenije pogorSanje performansi, osobito u pogledu o¢uvanja identiteta
1 uspjesnosti reidentifikacije nakon okluzija. Najslabiji rezultati ostvareni su u slucaju kada

se asocijacija temelji iskljucivo na prostorno-dinamickim informacijama.

Tablica 7.3: Usporedba performansi algoritma pracenja pri razlicitim konfiguracijama
integracije vizualnih RelD znacajki u prvoj (Al) i drugoj (A2) fazi asocijacije.

Al A2 HOTA MOTA MOTP IDSW IDF1 OKL"
) M ) (€3] ) )

85.57 93.03 89.82 42 94.38 25
8441 93.02 89.83 48 92.54 26
83.48 9297  89.83 57 90.98 15
83.21 9297  89.83 62 90.56 16

*x X S
EaTRa T NI

Na Slici 7.10 prikazana je uspjeSnost reidentifikacije plovila nakon okluzija razli¢itog
trajanja za razliCite konfiguracije integracije vizualnih RelD znacajki po fazama asocijacije
VOc-SORT algoritma. Iz prikazanih rezultata vidljivo je da konfiguracije koje ukljucuju vi-
zualne RelD znacajke u drugoj fazi asocijacije ostvaruju veci broj uspjesnih reidentifikacija u
svim kategorijama trajanja okluzije. Posebno je izraZena razlika u slucaju dugotrajnih oklu-
zija, gdje konfiguracije s ukljuCenim vizualnim znacajkama u drugoj fazi zadrzavaju znatno
viSu uspjesnost u odnosu na konfiguraciju koje se oslanjaju samo na prostorno-dinamicke in-

formacije, te na konfiguraciju koja vizualnu informaciju koristi samo u prvoj fazi asocijacije.
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Slika 7.10: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija pri razli¢itim konfiguracijama integracije vizualnih RelD znacajki u prvoj i drugoj
fazi asocijacije.

Primjer prikazan na Slici 7.11 ilustrira kako izostavljanje vizualnih informacija u prvoj
fazi asocijacije moZze utjecati na stabilnost pracenja. Slika prikazuje Cetiri trenutka pracenja,
t=1,...,4,iz videozapisa SSMOT_6. U gornjem retku prikazana je konfiguracija u kojoj se
u prvoj fazi asocijacije koriste iskljuc¢ivo geometrijske informacije temeljene na preklapanju
grani¢nih okvira, dok druga faza asocijacije kombinira vizualne znacajke i dinamicke infor-
macije kvantificirane Mahalanobisovom udaljenos$¢u. Donji redak prikazuje konfiguraciju
u kojoj se vizualne znacajke koriste u obje faze. U trenutku r = 2 plovilo s identitetom 9
privremeno nestaje iza kruzera. Isprekidani grani¢ni okvir oznaCava izgubljeni objekt Cija
putanja joS$ nije uklonjena iz sustava pracenja, dok strelica prikazuje procijenjeni smjer kre-
tanja objekta dobiven predvidanjem Kalmanovog filtera. U sljede¢em trenutku, t = 3, drugo
plovilo s identitetom 11 pribliZzava se podrucju u kojem je plovilo identiteta 9 prethodno iz-
gubljeno. U konfiguraciji koja ne koristi vizualne informacije u prvoj fazi asocijacije dolazi
do pogresne dodjele identiteta u trenutku r = 4, pri ¢emu se identitet 9 pridruZuje plovilu koje
je prethodno imalo identitet 11. Suprotno tome, konfiguracija koja koristi vizualne znacajke

u prvoj fazi asocijacije uspjeSno zadrZava ispravan identitet pracenog plovila.

7.3.3. Utjecaj koriStenog modela za ekstrakciju vizualnih znacajki

Kako bi se ispitao utjecaj odabranog modela za ekstrakciju vizualnih znacajki na perfor-
manse pracenja, s posebnim naglaskom na odrZavanje stabilnih identiteta objekata, prove-
dena je ablacijska analiza u kojoj se usporeduje pet razlicitih konfiguracija ReID modela
unutar VOc-SORT algoritma. U analizi su razmotrene dvije arhitekture za ekstrakciju zna-
¢ajki: ResNet50 [180] i OSNet 1.0 [228].
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Al X, A2 v

Slika 7.11: Primjer koji ilustrira utjecaj izostavljanja vizualnih informacija u prvoj fazi
asocijacije na performanse pracenja.

ResNet50 predstavlja opéi model duboke neuronske mreZe, izvorno razvijen za zadatke
klasifikacije slika, koji se u praksi Cesto koristi i kao osnova za ekstrakciju vizualnih zna-
¢ajki u RelD zadacima. U tom kontekstu usporedene su dvije varijante ResNet50 modela:
model treniran na opéem klasifikacijskom skupu podataka ImageNet [125] te model dodatno
treniran na domenski specificnom SSMOT RelD skupu podataka. S druge strane, OSNet 1.0
je arhitektura posebno dizajnirana za zadatak reidentifikacije objekata. Za ovaj model ana-
lizirane su tri varijante treniranja: model treniran na SSMOT RelD skupu podataka, model
treniran na ImageNet skupu podataka te model treniran na MSMT17 [323] skupu podataka za
reidentifikaciju pjeSaka. Problem reidentifikacije pjeSaka najzastupljeniji je u ovom podrucju
istrazivanja, zbog Cega su skupovi podataka iz te domene najbrojniji i najéesce koristeni. Po-
sljedi¢no, modeli trenirani na podacima za reidentifikaciju pjeSaka, kao i na ImageNet skupu
podataka, Cesto se primjenjuju kao univerzalni ekstraktori znacajki u zadacima praéenja vise
objekata, osobito kada domenski specificni RelD podaci nisu dostupni.

U Tablici 7.4 prikazani su rezultati evaluacije VOc-SORT algoritma pri koriStenju razli-
¢itih modela za ekstrakciju vizualnih znacajki te razli¢itih skupova podataka na kojima su ti
modeli trenirani. Najbolje performanse pokazuje OSNet 1.0 model treniran na SSMOT RelD
skupu podataka s najve¢im vrijednostima HOTA (85.57), MOTA (93.03) i IDF1 (94.38) me-
trika, najmanjim brojem promjena identiteta (42) te znatno viSe ispravnih reidentifikacija
nakon okluzija (25) od ostalih modela. Varijante OSNet 1.0 modela trenirane na ImageNet i

MSMT17 skupovima podataka ostvaruju niZe vrijednosti HOTA i IDF1 metrika te veci broj
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promjena identiteta u odnosu na model treniran na SSMOT RelD skupu podataka, neznatno

niZe vrijednosti MOTA metrike, te usporedive vrijednosti MOTP metrike. Kod ResNet50 ar-
hitekture, razlike izmedu modela treniranih na razli¢itim podacima manje su izrazene. Model
treniran na domenski specificnom SSMOT skupu podataka ostvaruje nesto bolje rezultate u
odnosu na ImageNet varijantu u metrikama povezanim s konzistentnoS¢u identiteta (IDSW
1 IDF1). Medutim, obje ResNet50 konfiguracije ostvaruju slabije ukupne rezultate u us-
poredbi s OSNet 1.0 modelom treniranim na SSMOT RelD skupu podataka. Vrijednosti
MOTA 1 MOTP metrika relativno su stabilne medu svim razmatranim konfiguracijama, dok
se najvele razlike u performansama ocituju u metrikama povezanim s odrZavanjem identi-

teta.

Tablica 7.4: Usporedba performansi algoritma pracenja pri koristenju razlicitih RelD
modela i skupova podataka na kojima su oni trenirani.

HOTA MOTA MOTP IDSW IDF1 OKL"
) ) ) ) ) )
SSMOT  OSNet1.0 8557 93.03 89.82 42 94.38 25

ImageNet OSNet 1.0 83.11 9297  89.82 63 90.43 14
MSMTI17 OSNet1.0 83.65 93.00 89.83 51 91.21 17

SSMOT  ResNet50 83.57 9298  89.83 58 91.36 17
ImageNet ResNet50 83.59 9296  89.83 60 91.25 17

Podaci Model

Slika 7.12 prikazuje broj uspjesnih reidentifikacija objekata nakon okluzija kada se razli-
¢it ReID modeli koriste za ekstrakciju vizualnih znacajki u VOc-SORT algoritmu, grupirane
prema duljini okluzije. U svim kategorijama okluzija OSNet model treniran na skupu poda-
taka SSMOT ostvaruje najbolje rezultate. NajizraZzenije razlike u performansama mogu se
uociti kod dugih okluzija, gdje su performanse ostalih ReID modela znatno slabije.

Vizualni primjeri na Slici 7.13 dodatno prikazuju razlike u primjeni razli¢itih ReID mo-
dela na dva testna primjera iz SSMOT skupa videozapisa. U oba primjera OSNet model
treniran na SSMOT RelD skupu podataka uspijeva odrzati ispravno identitete, dok ostali
modeli imaju poteSkoce u ocuvanju konzistentnih identiteta. Na desnom primjeru iz vide-
ozapisa SSMOT_6 prikazana su tri plovila klase speed craft slicnog oblika (identiteti 6, 10
17 u trenutku # = 1). VOc-SORT, pri koriStenju svih ReID modela osim domenski prilago-
denog OsNet 1.0 modela, u trenutku # = 2 ne uspijeva niti jednom od tih plovila dodijeliti
isti identitet. Pogreske istih modela vidljive su i na lijevom primjeru iz SSMOT_8 videoza-
pisa. Model OsNet 1.0 treniran na MSMT17 skupu podataka dodjeljuje identitet 8, koji je u
trenutku # = 1 pripadao trajektu, novom plovilu (jahti) koje je uslo u scenu. Kod ResNet50
modela identitet trajekta pogreSno se dodjeljuje katamaranu s kojim se mimoilazi, dok se

jahti koja je tek uSla u scenu ispravno dodjeljuje novi identitet.
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Slika 7.12: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija pri koristenju razlic¢itih modela za ekstrakciju vizualnih znacajki.

7.3.4. Utjecaj koriStenja dodatnog Kriterija za ranije uklanjanje
izgubljenih putanja

Varijanta VOc-SORT algoritma koja ukljucuje dodatni uvjet za ranije uklanjanje putanja
plovila izgubljenih u blizini ruba kadra pokazuje usporedive performanse u odnosu na verziju
algoritma koja taj uvjet ne koristi. 1z Tablice 7.5 vidljivo je da varijanta s dodatnim uvjetom
ostvaruje nesto bolje vrijednosti metrika HOTA (85.57 u odnosu na 85.35) 1 IDF1 (94.38
u odnosu na 94.04). S druge strane, varijanta bez dodatnog uvjeta biljezi jednu promjenu
identiteta manje, odnosno uspjeSnu dodatnu reidentifikaciju nakon jedne kratke okluzije.
Za ostale kategorije okluzija broj uspjeSnih reidentifikacija jednak je u obje varijante, $to
se moze vidjeti na Slici 7.14. 1z navedenog slijedi da dodatan uvjet za ranije uklanjanje
putanja uinkovito ogranicava broj izgubljenih putanja uz neznatan utjecaj na uspjeSnost
reidentifikacije. Stoga ga je preporucljivo zadrzati, osobito u scenama s velikim brojem

plovila i Cestim izlascima iz kadra.

Tablica 7.5: Razlika u performansama algoritma pracenja kada se koristi dodatan uvjet za
brisanje putanja i kada se on ne koristi.

Dodatni HOTA MOTA MOTP IDSW IDF1 OKL"
uvjet ) ) ) (€] ) )

v 85.57 93.03  89.82 42 94.38 25
X 8535 93.03  89.82 41 94.04 26
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Slika 7.13: Usporedni prikaz uspjesnosti razlicitih RelD modela u odrZavanju identiteta
plovila na dva testna primjera. Crvenim okvirom istaknute su pogreske reidentifikacije.

7.3.5. Utjecaj koriStene metode asocijacije i odabira grani¢ne

vrijednosti za vizualnu slicnost

PredloZeni VOc-SORT algoritam temelji se na dvostupanjskom postupku asocijacije. U pr-
voj fazi asocijacije za povezivanje putanja i detekcija koristi se kombinacija IoU udaljenosti
1 kosinusne udaljenosti vizualnih vektora znacajki, dok se u drugoj fazi asocijacije kosinusna
udaljenost kombinira s Mahalanobisovom udaljenoS$¢u. U obje faze asocijacije koristi se ne-
Sto viSa grani¢na vrijednost za vizualnu udaljenost (0.4) u odnosu na uobicajene vrijednosti.
U okviru ove ablacijske studije analizira se utjecaj ovakvog pristupa asocijaciji na ukupne
performanse pra¢enja. Posebno se razmatra opravdanost primjene dviju uzastopnih faza aso-
cijacije, utjecaj njihova redoslijeda, doprinos svake pojedinacne faze te osjetljivost algoritma
na odabrani prag vizualne udaljenosti.

U Tablici 7.6 prikazani su rezultati ablacijske analize primjene razli¢itih metoda asoci-
jacije putanja i novih detekcija, te utjecaj odabrane grani¢ne vrijednosti vizualne sli¢nosti.
U prvom stupcu naveden je primijenjeni postupak asocijacije, pri cemu "A1" oznacava jed-
nostupanjsku asocijaciju temeljenu na kombinaciji IoU i1 kosinusne udaljenosti, dok "A2"
oznacava asocijaciju koja kombinira kosinusnu 1 Mahalanobisovu udaljenost. Oznake "Al,
A2"1"A2, A1" ukazuju na dvostupanjski postupak asocijacije, pri ¢emu redoslijed oznaka
odgovara redoslijedu primjene pojedinih faza. Drugi stupac prikazuje koriStene granicne
vrijednosti vizualne sli¢nosti za svaku fazu asocijacije. U slucaju jednostupanjske asocija-
cije navedena je jedna vrijednost praga, dok su kod dvostupanjskih metoda prikazane dvije
vrijednosti koje se redom odnose na prvu i drugu fazu asocijacije.

PredloZeni dvostupanjski pristup asocijaciji detekcija i putanja (Al, A2 s grani¢nim vri-

jednostima 0.4 i 0.4) postiZze ukupno najbolje rezultate pracenja s najviSim vrijednostima
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Slika 7.14: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija kada se koristi dodatni uvjet za brisanje putanja i kada se on ne koristi.

Tablica 7.6: Usporedba performansi algoritma pracenja za razli¢ite metode asocijacije
putanja i detekcija te utjecaj odabrane granicne vrijednosti vizualne slicnosti na konacne
rezultate pracenja.

Granitne HOTA MOTA MOTP IDSW IDF1 OKL"

Asocijacija .. .

Jacy vrijednosti ™M ™M ™M W) ™M ™M
Al 0.2 83.97 93.01 89.83 67 91.08 6
Al 04 84.11 93.01 89.83 66 91.36 6
A2 0.2 84.45 92.89 89.85 119  92.20 20
A2 0.4 84.64 92.90 89.84 110 92.54 25
Al, A2 0.2,0.2 84.97 93.04 89.83 47 93.22 20
Al, A2 0.2,0.4 85.43 93.03 89.82 43 94.10 25
Al, A2 04,02 85.11 93.05 89.83 46 93.50 20
Al, A2 04,04 85.57 93.03 89.82 42 94.38 25
A2, Al 02,02 84.72 93.01 89.83 63 92.71 21
A2, Al 02,04 84.86 93.02 89.83 62 92.99 21
A2, Al 04,0.2 84.96 92.99 89.83 63 93.20 26
A2, Al 04,04 85.10 92.99 89.83 62 93.48 26

HOTA (85.57) i IDF1 (94.38) metrika, uz najmanji broj zamjena identiteta (42). Jednostu-
panjske asocijacije (Al 1 A2) u pravilu ostvaruju niZe vrijednosti promatranih metrika u od-
nosu na konfiguracije koje koriste dvije faze asocijacije, pri ¢emu je iznimka metrika MOTP,
kod koje samostalna primjena asocijacije A2 s granicnom vrijedno$¢u 0.4 ostvaruje najviSu
vrijednost.

Usporedba jednostupanjskih pristupa pokazuje da samostalna primjena asocijacije A2
rezultira boljim ukupnim performansama pracenja u odnosu na samostalnu primjenu asoci-

jacije A1, ali uz znatno veci broj zamjene identiteta pracenih plovila. Nasuprot tome, samos-
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talna primjena asocijacije Al pokazuje ograni¢enu u€inkovitost u odrzavanju konzistentnih

identiteta plovila nakon okluzija, Sto se oCituje u vrlo malom broju uspjesnih reidentifikacija
- svega njih Sest. Kombiniranjem ovih dviju asocijacija u dvostupanjski postupak navedeni
nedostaci se ublaZavaju. Primjena asocijacije A2 u drugoj fazi, nakon A1, znatno poveéava
broj plovila koji je uspjesno identificiran nakon okluzije (s 6 se povecava na 20 pri niZem
pragu vizualne sli¢nosti, a na 25 pri visSem). S druge strane, primjena asocijacije Al u drugoj
fazi, nakon asocijacije A2, rezultira znacajnim smanjenjem broja zamjena identiteta tijekom
pradenja, pri cemu se broj zamjena identiteta smanjuje sa 1191 110 na 63 1 62, ovisno o oda-
branoj grani¢noj vrijednosti. Istodobno se postiZe i uspjeSna reidentifikacija jednog dodatnog
sluc¢aja okluzije.

Analiza redoslijeda primjene asocijacija u dvostupanjskom postupku pokazuje da se u
oba razmatrana slucaja najbolji rezultati postiZu kada se u obje faze koristi grani¢na vrijed-
nost vizualne sli¢nosti od 0.4. Iako konfiguracija u kojoj se asocijacija A2 primjenjuje prije
A1 omogucuje ispravno razrjeSavanje jedne okluzije viSe, konfiguracija u kojoj se Al pri-
mjenjuje u prvoj, a A2 u drugoj fazi, u pravilu ostvaruje bolje ukupne performanse pracenja.
To se odituje u visSim vrijednostima HOTA, MOTA i IDF1 metrika, kao i u manjem broju
zamjena identiteta.

Na Slici 7.15 prikazan je broj uspjes$no reidentificiranih plovila u ovisnosti o duljini ok-
luzije, za razli¢ite konfiguracije metode asocijacije. NajloSije rezultate pokazuje samostalna
primjena asocijacije Al s tek jednom uspjeSnom reidentifikacijom nakon okluzije srednje
duljine te niti jednom uspjeSnom reidentifikacijom u slucaju dugih okluzija. Dvostupanjski
pristupi asocijacije koji kombiniraju metode Al i A2 pokazuju znatno bolje rezultate u re-
identifikaciji plovila nakon okluzija, neovisno o redoslijedu njihove primjene. Nadalje, kod
konfiguracija koje ukljucuju asocijaciju A2 povecanjem grani¢ne vrijednosti na vizualnu
slicnost s 0.2 na 0.4 kod okluzija srednje duljine uspje$no se reidentificiraju dva dodatna
slucaja, dok su kod dugih okluzija zabiljezena tri dodatna slucaja uspjesne reidentifikacije.

Bududi da je druga faza asocijacije VOc-SORT algoritma inspirirana na¢inom asocija-
cije StrongSORT algoritma uz povecanu grani¢nu vrijednost vizualne sli¢nosti, proveden je
dodatni eksperiment kako bi se ispitalo je li za poboljSanje performansi pra¢enja dovoljno
prilagoditi prag vizualne sli¢nosti unutar izvornog StrongSORT-a, ili je pak nuZno i dodatno
modificirati sam postupak asocijacije. Rezultati tog eksperimenta prikazani su u Tablici 7.7,
gdje oznaka StrongSORT*? oznacava varijantu StrongSORT algoritma s poveéanom granié-
nom vrijednoscu vizualne sli¢nosti, s 0.2 na 0.4.

Povecanje granine vrijednosti vizualne slicnosti u StrongSORT algoritmu dovodi do
porasta broja uspjesnih reidentifikacija nakon okluzije, s 13 na 19 slucajeva. Na Slici 7.16

porast je vidljiv u svim kategorijama okluzija (kratke: 7 — 9, srednje duge: 2 — 4, duge:

Razlika izmedu StrongSORT* algoritma i samostalne asocijacije A2 s pragom vizualne sli¢nosti 0.4 je u
varijanti Kalmanovog filtera koristenoj za predvidanje sljedeceg stanja putanje i u nacinu potvrdivanja putanja
u probnom razdoblju
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Slika 7.15: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija ovisno o koristenoj metodi asocijacije postojecih putanja i novih detekcija.

3 — 7), pri ¢emu je najizraZzeniji upravo kod dugih okluzija. Medutim, ovo poboljSanje ne
prati znaCajan porast ostalih kvantitativnih metrika HOTA, MOTA, MOTP i IDF1, a broj

zamjena identiteta i dalje ostaje vrlo visok.

Tablica 7.7: Utjecaj povecanja praga vizualne slicnosti u StrongSORT algoritmu.

0. HOTA MOTA MOTP IDSW IDF1 OKL™"
e (M (M ) (M (M
StrongSORT 0.2 83.83 9221 89.78 371  91.59 13
StrongSORT* 0.4 83.70 9225  89.77 374  91.33 19
VOc-SORT 04,04 8557 93.03 89.82 42 94.38 25

7.4. Rasprava

U ovom poglavlju predstavljen je VOc-SORT algoritam pracenja, razvijen s ciljem poboljSa-

nja robusnosti pracenja u scenarijima dugotrajnih okluzija u pomorskim okruZenjima. Prove-

dena evaluacija i opseZna ablacijska studija omogucile su preciznu analizu doprinosa pojedi-

nih komponenti algoritma njegovim ukupnim performansama, pri ¢emu je poseban naglasak

stavljen na odrZavanje stabilnih identiteta pracenih objekata, osobito nakon razdoblja zaklo-

njenosti. Dobiveni rezultati potvrduju da pouzdano pracenje plovila u sloZzenim pomorskim

scenama zahtjeva integriran pristup koji objedinjuje kvalitetnu detekciju, domenski prila-

godenu ekstrakciju vizualnih znacajki te pazljivo odabranu cijenu pridruZivanja i strategiju

asocijacije putanja i detekcija.
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Slika 7.16: Prikaz broja uspjesnih reidentifikacija algoritma pracenja po kategorijama
okluzija za VOc-SORT, StrongSORT i StrongSORT* algoritme.

7.4.1. Utjecaj detekcije na performanse pracenja

Rezultati ablacijske studije pokazuju da kvaliteta detekcija izravno utjeCe na ukupnu ucinko-
vitost algoritma praéenja, ali ima ogranicen doprinos u rjeSavanju problema reidentifikacije
plovila nakon okluzije. Iako bolji detektor povecava vjerojatnost ponovne detekcije plovila
nakon okluzije, on ne rjeSava problem njegova ispravnog povezivanja s prethodnim iden-
titetom, Sto potvrduju rezultati iz Tablice 7.2: u odnosu na najslabiji detektor YOLOI1 1n,
najsnazniji detektor YOLO11m nakon okluzije uspjesno reidentificira svega jedno plovilo
viSe. Medutim, znacajno poboljSanje u vidu stabilnosti i to€nosti pracenja jasno je izra-
Zeno povecanjem op¢ih metrika pracenja (HOTA: 81.34-85.57, MOTA: 89.19-93.03, IDF1:
90.73-94.38) 1 smanjenju broja promjena identiteta (IDSW: 77-42). Iz navedenog se moze
zakljuciti da iako detekcija predstavlja nuzan uvjet za uspjes$nu reidentifikaciju objekta nakon
okluzije, ona sama po sebi nije dovoljna. Stoga je kljucne izazove reidentifikacije, osobito u
slucajevima duljih okluzija, potrebno rjeSavati na razini drugih komponenti algoritma, poput
asocijacije 1 ekstrakcije vizualnih znacajki, a ne isklju¢ivo kroz unaprjedenje detekcijskog

modela. U skladu s navedenim, moZe se zakljuciti da je hipoteza H, potvrdena.

7.4.2. Uloga integracije vizualnih RelD znacajki i informacija o

kretanju u asocijaciji putanja i detekcija

Rezultati ablacijske studije 7.3.2 ukazuju na vaznost zajednicke integracije vizualnih zna-
¢ajki 1 informacija o kretanju u postupku asocijacije putanja i detekcija. Ukljucivanje vi-
zualnih znacajki u drugoj fazi asocijacije pokazalo se klju¢nim za uspjeS$nu reidentifikaciju
plovila nakon okluzije, Sto je u skladu s njezinom funkcionalnom ulogom u povezivanju iz-

gubljenih putanja s novim detekcijama nakon duljih prekida vidljivosti. U toj fazi, prostorno-
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dinamicke informacije dobivene iz modela kretanja Cesto nisu dovoljne za pouzdanu asoci-

jaciju, osobito u scenarijima s vecim brojem plovila koja imaju sli¢ne obrasce kretanja kada
vizualne znacajke predstavljaju nuzan dodatni izvor diskriminativne informacije.

S druge strane, izostavljanje vizualnih RelD znacajki samo u prvoj fazi asocijacije ne
dovodi do izrazitog pogorSanja performansi predloZzenog algoritma u vidu reidentifikacije
plovila nakon okluzije. U promatranoj konfiguraciji zabiljezena je Cak i neznatno vecéa us-
pjesSnost reidentifikacije u kategoriji srednje dugih okluzija, dok je broj uspjesSno reidenti-
ficiranih plovila u ostalim kategorijama jednak konfiguraciji u kojoj se vizualne znacCajke
koriste u obje faze asocijacije. Takvo ponaSanje moZe se objasniti Cinjenicom da se prva faza
asocijacije u velikoj mjeri oslanja na geometrijsku blizinu detekcija i dobivenih predvidanja
putanja, koja je u uvjetima malih vremenskih razmaka ¢esto dovoljna za ispravnu asocijaciju.
Medutim, kako ilustrira kvalitativni primjer prikazan na Slici 7.11, u situacijama koje uklju-
Cuju privremeni gubitak objekta i istodobnu prisutnost drugih plovila u istom prostornom
podrudju, izostavljanje vizualnih informacija u prvoj fazi asocijacije moze povecati vjerojat-
nost pogreSne dodjele identiteta te narusiti stabilnost pracenja. Takve se pogreske oCituju u
degradaciji HOTA, MOTA, IDSW i IDF1 metrika, Sto je vidljivo iz rezultata prikazanih u
Tablici 7.3. Kako se povecava broj izgubljenih plovila (Cije se putanje u sustavu zadrZavaju
odredeni vremenski period), raste i rizik od pogreSnih asocijacija temeljenih iskljucivo na
preklapanju grani¢nih okvira, bududi da se prostorne pozicije izgubljenih i aktivno pracenih
objekata mogu preklapati. Ukljucivanjem vizualnih ReID znacajki u prvu fazu asocijacije
sustavu se pruza dodatna diskriminativna informacija koja omogucuje razlikovanje trenutno
detektiranog plovila od vizualno razlicitih izgubljenih plovila, ¢ime se smanjuje vjerojatnost
pogresne dodjele identiteta.

Iz Tablice 7.3 moze se vidjeti da konfiguracija u kojoj su vizualne RelD znacajke uklju-
cene u obje faze asocijacije dosljedno ostvaruje najbolje ukupne rezultate prema standard-
nim evaluacijskim metrikama, uz najmanji broj zamjena identiteta. Izostavljanjem vizualnih
znacajki iz jedne od faza asocijacije dolazi do pogorSanja vrijednosti metrika, pri ¢emu je
to pogorSanje izraZenije kada se vizualne znacajke izostave iz druge faze asocijacije, koja
je namijenjena reidentifikaciji objekata nakon duljih okluzija. Najslabije performanse zabi-
ljezene su u konfiguraciji koja ne koristi vizualne znacajke ni u jednoj fazi asocijacije. U
cjelini, dobiveni rezultati pruZaju empirijsku potporu hipotezi Hy4, ukazujuci na vaznost in-
tegracije vizualnih RelID znacajki i informacija o kretanju za stabilnije praéenje i pouzdanu

asocijaciju detekcija i putanja u uvjetima dugotrajnih okluzija.

7.4.3. Uloga RelD modela i domenske prilagodbe

Analiza utjecaja koriStenog modela za ekstrakciju vizualnih znacajki ukazuje na to da sta-
bilna reidentifikacija plovila ovisi o odabiru prikladne arhitekture ReID modela, kao i o

njegovoj domenskoj prilagodbi. Iako su oba promatrana modela trenirana na domenski spe-
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cificnom SSMOT RelD skupu podataka, OSNet, kao arhitektura izvorno dizajnirana za za-

datak reidentifikacije, postize ukupno bolje rezultate pracenja od opéeg ResNet50 modela.
To se ocituje u visSim vrijednostima HOTA (85.57-83.57) i IDF1 (94.38-91.36) metrika, kao
i u ve¢em broju uspjesnih reidentifikacija nakon okluzija (25-17), pri ¢emu je razlika osobito
izrazena u slucaju okluzija duljeg trajanja (9-4).

Dodatna analiza u¢inka domenske prilagodbe ukazuje na njezin izrazen pozitivan utjecaj
kod OSNet arhitekture, dok se kod ResNet50 arhitekture ne uocavaju znacajna poboljSanja
u odnosu na model treniran na opéem skupu podataka. Dobiveni rezultati upucuju na to da
ucinak domenske prilagodbe RelD modela nije univerzalan, veé je uvjetovan arhitekturom
modela, pri ¢emu su pozitivni ucinci izraZeniji kod arhitektura specijaliziranih za zadatak
reidentifikacije. U tom se smislu hipoteza H3 o pozitivnoj ulozi domenske prilagodbe moze
smatrati djelomi¢no potvrdenom.

S druge strane, ReID modeli trenirani na opéim skupovima podataka mogu predstavljati
prihvatljivo rjeSenje u situacijama kada domenski prilagodeni modeli nisu dostupni. Me-
dutim, dobiveni rezultati ukazuju na njihova ogranicenja u sloZenijim uvjetima pracenja,
osobito u prisutnosti dugotrajnih okluzija, mimoilaZenja plovila te u scenarijima s vizualno

sli¢nim objektima.

7.4.4. Strategija asocijacije i robusnost na dugotrajne okluzije

Kao jedan od vaznijih doprinosa ove disertacije moze se istaknuti predloZeni dvostupanjski
pristup asocijaciji, s pazljivo odabranim mjerama sli¢nosti u pojedinim fazama asocijacije,
koji pokazuje potencijal za poboljSanje performansi algoritma u uvjetima dugotrajnih oklu-
zija, uz ocuvanje stabilnosti pracenja.

Prva asocijacija (A1) zasniva se na geometrijsko-vizualnim kriterijima koji prioritiziraju
visoku vizualnu sli¢nost i preklapanje izmedu detektiranih i predvidenih grani¢nih okvira,
¢ime se osigurava stabilan kontinuitet putanja u situacijama kada su nove detekcije dostupne
1 pouzdane. Medutim, kada zbog okluzije detekcije izostaju tijekom odredenog vremenskog
perioda, pogreska u predvidanju Kalmanovanovog filtera postupno se akumulira, zbog Cega
se predvideni granicni okvir u pravilu vise ne preklapa s novom detekcijom u trenutku ponov-
nog pojavljivanja plovila, $to ogranicava sposobnost ove faza asocijacije da samostalno vrati
ispravan identitet plovila nakon okluzije. To potvrduju rezultati ablacijske studije, prema
kojima samostalna primjena asocijacije Al postize svega 6 uspjesnih reidentifikacija nakon
okluzije, dok se u slucaju dugotrajnih okluzija ne biljeZi niti jedna uspjeSna reidentifikacija.

S druge strane, kombinacija Mahalanobisove 1 kosinusne udaljenosti (A2) pokazuje se
znatno ucinkovitijom u fazi reidentifikacije, buduci da u obzir uzima i dinamiku kretanja
plovila te nesigurnost predvidanja Kalmanovog filtera. Time se omogucuje tolerancija na
veca odstupanja izmedu predvidenog i stvarnog poloZaja objekta, $to je osobito vazno nakon

duljih okluzija, kada geometrijsko preklapanje grani¢nih okvira Cesto izostaje. Medutim,
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kada se takav fleksibilniji kriterij koristi samostalno dolazi do znatnog porasta zamjena iden-

titeta, Sto potvrduje vrijednost IDSW metrike asocijacije A2 u Tablici 7.6.

Predlozeni dvostupanjski pristup Koristi prostorno stroZu asocijaciju u prvoj fazi kako
bi se osigurala stabilnost identiteta kod pouzdanih pridruZivanja, dok se prostorno fleksibil-
nija asocijacija s vizualnim znacajkama i Mahalanobisovom udaljenoscu koristi tek u drugoj
fazi kako bi se omogucdila reidentifikacija plovila nakon duljih prekida. Time se istodobno
smanjuje broj zamjena identiteta za vrijeme pracenja, zadrZzava sposobnost reidentifikacije
plovila nakon duljih okluzija i postiZe stabilnost pracenja. To potvrduju rezultati ablacijske
studije prikazani u Tablici 7.6. Pri tome je vaZno, osobito u drugoj fazi asocijacije koja je
usmjerena na rjeSavanje problema reidentifikacije objekta, koristiti nesto viSu grani¢nu vri-
jednost za udaljenost vektora vizualnih znacajki, kako se potencijalno ispravna pridruZivanja
ne bi odbacila u slucajevima vecih vizualnih odstupanja koja mogu nastati uslijed duljih ok-
luzija. Samim povecanjem granicne vrijednosti u drugoj asocijaciji A2 s 0.2 na 0.4 broj
uspjesno reidentificiranih plovila nakon okluzije raste s 20 na 25.

Dodatnu potporu tezi o vaznosti povecanja grani¢ne vrijednosti vizualne slicnosti u dru-
goj fazi asocijacije za pouzdanu reidentifikaciju plovila nakon dugotrajnih okluzija pruzaju i
rezultati ablacijske studije 7.3.5 (Tablica 7.7, Slika 7.16) u kojoj su usporedene performanse
izvornog StrongSORT algoritma, koji je bio inspiracija za drugu fazu asocijacije VOc-SORT-
a, s originalnim pragom vizualne sli¢nosti od 0.2, te njegove modificirane varijante s povi-
Senom grani¢nom vrijednosti od 0.4. Rezultati pokazuju da povecanje grani¢ne vrijednosti
vizualne sli¢nosti doprinosi vecoj uspjesSnosti reidentifikacije plovila nakon okluzija, osobito
u slucaju dugotrajnih okluzija. Medutim, kao i u konfiguracijama "A2" koje se oslanjaju
isklju¢ivo na drugu fazu asocijacije, modificirana varijanta StrongSORT algoritma i dalje
biljezi poveéan broj zamjena identiteta te generalno ostvaruje slabije performanse pracenja.
Time se dodatno istiCu prednosti dvostupanjske strategije asocijacije primijenjene u VOc-
SORT algoritmu, koja omogucuje ucinkovitije oCuvanje identiteta uz ravnotezu pouzdanosti
reidentifikacije i stabilnosti pracenja.

Prethodno razmatranje i dobiveni rezultati potvrduju da unaprjedenje postupka asocija-
cije detekcija i putanja moZe doprinijeti boljem ocuvanju identiteta plovila tijekom dugotraj-
nih okluzija, u skladu s hipotezom Hs.

Produljeno vrijeme ¢ekanja na uklanjanje putanja uvedeno je kako bi se omogucila re-
identifikacija plovila i nakon duljih okluzija. Takav pristup, medutim, moze dovesti do na-
kupljanja izgubljenih putanja plovila koja su vjerojatno trajno napustila kadar. Uvodenjem
dodatnog kriterija za ranije uklanjanje putanja izgubljenih u blizini ruba kadra taj se problem
reducira. Rezultati ablacijske studije pokazuju da navedeni kriterij ne utjeCe nepovoljno na
uspjesSnost reidentifikacije, StoviSe rezultira nesSto viSim vrijednostima HOTA i IDF1 me-
trika, te doprinosi stabilnijem radu algoritma i sprjeCava akumulaciju nerelevantnih putanja

tijekom produljenog vremena ¢ekanja.
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7.4.5. Polozaj predlozenog algoritma u odnosu na postojece metode

Jedna od klju¢nih pretpostavki ovog istrazivanja, formulirana hipotezom Hj, jest da posto-
jece metode pracenja plovila pokazuju smanjenu sposobnost o¢uvanja identiteta u uvjetima
dugotrajnih okluzija. Kvantitativni rezultati evaluacije na SSMOT skupu videozapisa, prika-
zani u Tablici 7.1 1 dodatno ilustrirani analizom broja uspjesnih reidentifikacija prema duljini
okluzije sa Slike 7.4, potvrduju navedenu hipotezu. Sve analizirane postoje¢e metode biljeze
jako nizak broj uspjeSnih reidentifikacija u slucajevima srednje dugih i dugih okluzija, Sto
ukazuje na ograni¢enu sposobnost ocuvanja identiteta u takvim uvjetima.

Usporedba s postoje¢im metodama pracenja pokazuje da se predlozeni VOc-SORT al-
goritam pozicionira kao rjeSenje koje uravnotezuje stabilnost pracenja i sposobnost reidenti-
fikacije plovila u sloZzenim pomorskim scenarijima. Posebno se isti¢e njegova ucinkovitost
u ocuvanju identiteta nakon okluzija, s ukupno 25 uspjesnih reidentifikacija, u usporedbi s
13 koliko ostvaruje sljedeca najbolja metoda, pri ¢emu je razlika joS izraZenija kod srednje
dugih i dugih okluzija.

Usporedba VOc-SORT algortima s postojecim pristupima koji koriste vizualne znacajke,
poput BoT-SORT-a, StrongSORT-a i Deep OC-SORT-a, ukazuje da razlike u performansama
ne proizlaze iskljucivo iz koriStenja RelD modela, ve¢ ponajprije iz nacina na koji su vizu-
alne informacije integrirane u proces asocijacije. Nadalje, usporedba performansi varijante
VOc-SORT algoritma u kojoj su vizualne informacije u potpunosti izostavljene (Al X, A2
X u Tablici 7.3) s postojeCim pristupima koji takoder koriste samo prostorno-dinamicke in-
formacije (Tablica 7.1, RelD X) pokazuje da VOc-SORT 1 u toj konfiguraciji ostvaruje vise
vrijednosti HOTA, MOTA i IDF1 metrika, uz manji broj zamjena identiteta te veci broj is-
pravno reidentificiranih plovila nakon okluzija. StoviSe, u promatranom eksperimentalnom
okruzenju, performanse varijante VOc-SORT algoritma koja ne koristi ReID znacajke uspo-
redive su, a u nekim slucajevima i bolje u odnosu na neke postojeée pristupe koji ih koriste.

Predlozeni dvostupanjski postupak asocijacije razlikuje se od postojecih pristupa u al-
goritmima BoT-SORT i ByteTrack. U tim metodama povezivanje u prvoj fazi asocijacije
temelji se isklju¢ivo na IoU udaljenosti (ByteTrack) ili na njenoj kombinaciji s vizualnim
znacajkama BoT-SORT), dok oba algoritma u drugoj fazi koriste samo IoU. OC-SORT al-
goritam takoder koristi dvije faze asocijacije, no u slu¢aju OC-SORT-a obje faze asocijacije
koriste iskljucivo prostorne informacije 1 informaciju o kretanju: kombinaciju IoU i konzis-
tontnosti smjera kretanja u prvoj fazi, te samo IoU u drugoj fazi. Nasuprot tome, u pred-
loZenom pristupu vizualne znacCajke koriste se u obje faze asocijacije, te se u drugoj fazi
kriterij preklapanja grani¢nih okvira zamjenjuje se Mahalanobisovom udaljenos$¢u koja je
kljucna za reidentifikaciju objekata nakon duljih zaklonjenosti kada eksplicitno preklapanje
grani¢nih okvira predvidene putanje i detekcije izostaje. Navedeno je potkrijepljeno kvan-
titativnim rezultatima evaluacije iz Tablice 7.1, kao 1 analizom prikazanom na Slici 7.4, iz

kojih je vidljivo da VOc-SORT algoritam pokazuje bolje rezultate u reidentifikaciji plovila
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nakon okluzija, osobito u slucajevima srednje dugih i dugih razdoblja zaklonjenosti.

U odnosu na postojece pristupe, VOc-SORT se pokazuje kao uravnoteZeno rjeSenje za
pracenje vise objekata u pomorskom okruzenju. SloZeniji duboki modeli neuronskih mreza
koriste se isklju¢ivo ondje gdje su doista nuzni, odnosno u fazama detekcije i ekstrakcije
vizualnih znacajki. Umjesto oslanjanja na dodatne duboke arhitekture, poboljSane perfor-
manse predloZzenog algoritma postignute su sustavnom kombinacijom postojecih jednostav-
nih koncepata kroz pazljivo osmisljen postupak asocijacije i domenski prilagodene vizualne
znacCajke. Na ovaj nacin poboljSane su performanse pracenja u vidu stabilnosti i reidentifi-
kacije, a zadrZana je racunalna u¢inkovitost koja je usporediva s ostalim metodama praéenja

koje koriste ReID modele.

7.4.6. Ogranicenja predloZenog pristupa

Unato¢ postignutim poboljSanjima, predloZeni pristup ima odredena ogranicenja. Perfor-
manse VOc-SORT algoritma i dalje su u velikoj mjeri uvjetovane kvalitetom ulaznih de-
tekcija, Sto predstavlja temeljno ogranicenje pristupa temeljenih na detekciji. PoboljSana
strategija asocijacije pomaze u reidentifikaciji plovila nakon okluzije, ali ne moze ispravno
ponovno identificirati objekt koji uopce nije detektiran. Nadalje, moguénost reidentifikacije
ogranicena je maksimalnim vremenom Cekanja putanja od 625 okvira, zbog Cega okluzije
ekstremnog trajanja i dalje predstavljaju otvoren izazov. Pojedini pragovi, ukljucujuéi i gra-
ni¢nu vrijednost vizualne sli¢nosti, odredeni su empirijski, a njihov u¢inak van odabranih
vrijednosti nije analiziran. U okviru rada takoder je zadrzan standardni Kalmanov filter za
predvidanje stanja putanja, dok potencijalni ucinci alternativnih modela predvidanja nisu
razmatrani. Konacno, evaluacija je provedena iskljucivo u pomorskoj domeni, na konkret-
nom primjeru pracenja plovila u splitskoj luci, generalizacija predloZenog pristupa na druga

pomorska okruZenja i domene nije ispitana.
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Automatska detekcija i pracenje plovila predstavljaju klju¢ne preduvjete za razvoj autonom-
nih sustava nadzora pomorskog prometa kojima bi se ublazila ogranicenja postojecih rjesenja
temeljenih na radarskim sustavima i AIS-u te smanjila potreba za ljudskom intervencijom. U
tom se kontekstu metode racunalnog vida temeljene na dubokom ucenju namecu kao relevan-
tan istrazivacki smjer. Medutim, pouzdano pracenje plovila u stvarnim operativnim uvjetima
ostaje izazovno zbog Cestih zaklonjenosti i privremenih gubitaka detekcija, Sto otezava ocu-
vanje identiteta i kontinuiteta putanja, osobito tijekom duljih prekida vidljivosti. Dodatno,
u podrucju pracenja plovila opéenito je izrazen nedostatak javno dostupnih i opéeprihvace-
nih referentnih skupova podataka, $to ograni¢ava objektivnu evaluaciju postojecih metoda i
usporava sustavni razvoj novih algoritamskih rjeSenja.

Cilj ove doktorske disertacije je istraziti i eksperimentalno validirati sustav za automatsku
detekciju i pracenje plovila u RGB videozapisima koji kombinira metode dubokog ucenja i
tradicionalne algoritamske pristupe, poput Kalmanovog filtera i madarskog algoritma, s ci-
ljem povecanja stabilnosti pracenja i oCuvanja identiteta plovila u uvjetima dugotrajnih oklu-
zija. U okviru tog cilja, disertacija adresira i izazov nedostatka referentnih skupova podataka
za pracenje plovila razvojem novog SSMOT skupa podataka, koji omogucuje objektivnu us-
poredbu razliCitih pristupa za pracenje plovila te analizu njihovih performansi u uvjetima
okluzija razlicitog trajanja.

Provedenim istrazivanjem, u skladu s postavljenim istrazivackim ciljem, ostvareni su
ocekivani znanstveni doprinosi. Prvi doprinos odnosi se na izradu referentnog skupa ozna-
¢enih slika i videozapisa za detekciju, reidentifikaciju i pracenje plovila, koji ukljucuje jasno
definirane primjere okluzija razlicitog trajanja. Takav skup podataka omogucuje objektivnu
evaluaciju postojecih metoda, kao i sustavnu analizu njihovih performansi tijekom okluzija,
te predstavlja vrijednu osnovu za daljnja istrazivanja u podrucju pracenja plovila. Drugi
doprinos ostvaren je razvojem algoritma za pracenje plovila u RGB videozapisima s pobolj-
Sanim performansama u uvjetima dugotrajnih okluzija, ¢ime se postiZe stabilnije oCuvanje
identiteta i smanjenje fragmentacije putanja u odnosu na postojece pristupe te se dodatno
unapreduje robusnost pracenja u sloZzenim pomorskim scenarijima.

Rezultati provedenih eksperimenata ukazuju na ogranicenja postojecih algoritama prace-
nja u scenarijima koji ukljucuju dulje prekide vidljivosti plovila. Iako poboljSanje kvalitete

detekcija pozitivno utjeCe na opée performanse pracenja, ono samo po sebi nije dostatno za
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pouzdanu reidentifikaciju plovila nakon dugotrajnih okluzija. U tom je kontekstu u sklopu
disertacije predloZen algoritam pracenja plovila VOc-SORT, koji integrira domenski prilago-
dene vizualne znacajke i prostorno-dinamicke informacije unutar dvostupanjskog postupka
asocijacije, ¢ime se dodatno unapreduje sposobnost oCuvanje identiteta plovila. Dobiveni
rezultati potvrduju da takav pristup omogucuje stabilnije praenje plovila, uz smanjenje za-
mjena identiteta i povecanje uspjesnosti reidentifikacije nakon duljih razdoblja zaklonjenosti.
Na temelju dobivenih rezultata mozZe se smatrati da su postavljene pomocéne istrazivacke hi-
poteze empirijski utemeljene, Sto ujedno podupire i glavnu istrazivacku hipotezu disertacije.

Unatoc postignutim poboljSanjima i potvrdenoj ucinkovitosti predloZzenog pristupa, pro-
vedeno istrazivanje ima odredena ogranicenja koja je potrebno uzeti u obzir. Jedno od kljuc-
nih ograni¢enja odnosi se na prostornu i kontekstualnu ogranic¢enost skupa podataka SSMOT,
koji je prikupljen na jednoj lokaciji i s jednom fiksnom kamerom, zbog Cega generalizacija
dobivenih rezultata na razli¢ita pomorska okruZenja, konfiguracije kamera i klimatske uvjete
zahtijeva dodatnu eksperimentalnu provjeru. Nadalje, predloZeni sustav temelji se isklju-
¢ivo na vizualnim informacijama RGB kamere, pa se u uvjetima izrazito loSe vidljivosti,
poput guste magle, no¢nih uvjeta bez rasvjete ili jakih atmosferskih smetnji, moze oceki-
vati degradacija performansi. lako se prilikom implementacije VOc-SORT algoritma pazilo
na njegovu raCunsku sloZenost, znatno povecanje broja istovremeno pracenih plovila ili pri-
mjena na sustave s ograni¢enim hardverskim resursima moZe predstavljati izazov. Takoder,
zbog definiranog ogranicenja na maksimalnu duljinu ¢ekanja pojavljivanja plovila nakon ok-
luzije, ovako implementirani algoritam nije otporan na okluzije ekstremnog trajanja, koje i
dalje predstavljaju otvoren izazov.

Polazeci od navedenog, buduca istraZzivanja mogu biti usmjerena u nekoliko smjerova.
Prije svega, preporucuje se prosiriti referentni SSMOT skup podataka na veci broj lokacija i
raznovrsnija pomorska okruzenja, ukljucujuci otvoreno more i viSe luka, kako bi se omogu-
¢ila robusnija evaluacija i poboljsala generalizacija predloZenog pristupa. Nadalje, integra-
cija dodatnih senzora, poput termalnih kamera, radara ili AIS podataka, otvara moguénost
razvoja viSesenzorskih sustava povecane otpornosti na loSe uvjete vidljivosti. Buduéa istra-
Zivanja mogu se dodatno usmyjeriti na ispitivanje naprednijih pristupa predvidanju kretanja
plovila, razvoj adaptivnih strategija asocijacije prilagodenih promjenjivim uvjetima pracenja
te na analizu potencijala primjene transformerskih modela, uz poseban naglasak na optimi-

zaciju njihove racunalne ucinkovitosti i mogucnost primjene u stvarnom vremenu.

140



LITERATURA

[1] B. Iancu, V. Soloviev, L. Zelioli i J. Lilius, Aboships—an inshore and offshore ma-
ritime vessel detection dataset with precise annotations, Remote Sensing, 13, 5, 988,
2021.

[2] B. Zhang, J. Liu, R. W. Liu i Y. Huang, Deep-learning-empowered visual ship detec-
tion and tracking: Literature review and future direction, Engineering Applications of
Artificial Intelligence, 141, 109754, 2025.

[3] M. H. Zwemer, R. G. Wijnhoven i P. H. de With, Ship detection in harbour surveillance
based on large-scale data and cnns., VISIGRAPP (5: VISAPP), 153-160, 2018.

[4] P. Kaur, A. Aziz, D. Jain, H. Patel, J. Hirokawa, L. Townsend, C. Reimers i F. Hua,
Sea situational awareness (seasaw) dataset, Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2579-2587, 2022.

[5] E. L. Chevalier, Radar, without tears, 2017.

[6] G.Longo, E. Russo, A. Armando i A. Merlo, Attacking (and defending) the maritime
radar system, IEEE Transactions on Information Forensics and Security, 18, 3575—
3589, 2023.

[7] E. Badurina, Automatski identifikacijski sustav (ais), Pomorski zbornik, 40, 1, 79-94,
2002.

[8] M. Tomovié i Z. Lusi¢, e-navigacija, Kapetanov Glasnik, , 37, 20-29, 2019.

[9] D. Weihmayr, F. Sezgin, L. Tolksdorf, C. Birkner i R. N. Jazar, Predicting the in-
fluence of adverse weather on pedestrian detection with automotive radar and lidar
sensors, 2024.

[10] C. Aydogdu, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, M. F. Keskin,
E. Nilsson, M. Rydstrom, K. Vands i H. Wymeersch, Radar interference mitigation
for automated driving, 2019.

[11] D.Xu1H. Zhang, Study of low-altitude slow and small target detection on radar, 2017
Sth International Conference on Machinery, Materials and Computing Technology
(ICMMCT 2017), 529-532, Atlantis Press, 2017.

[12] A. Androjna, M. Perkovic, 1. Pavic i J. Miskovi¢, Ais data vulnerability indicated by
a spoofing case-study, Applied Sciences, 11, 11, 5015, 2021.

[13] D. Yang, M. I. Solihin, Y. Zhao, B. Yao, C. Chen, B. Cai i A. Machmudah, A review of
intelligent ship marine object detection based on rgb camera, IET Image Processing,
18, 2, 281-297, 2024.

141



LITERATURA

[14] Y. LeCun, Y. Bengio i G. Hinton, Deep learning, nature, 521, 7553, 436-444, 2015.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard i L. D.
Jackel, Backpropagation applied to handwritten zip code recognition, Neural compu-
tation, 1, 4, 541-551, 1989.

[16] D. H. Hubel 1 T. N. Wiesel, Receptive fields and functional architecture of monkey
striate cortex, The Journal of physiology, 195, 1, 215-243, 1968.

[17] K. Fukushima, Neocognitron, Scholarpedia, 2, 1, 1717, 2007, revision #91558.

[18] R.Zhang, S. Li, G. Ji, X. Zhao, J. Li i M. Pan, Survey on deep learning-based marine
object detection, Journal of Advanced Transportation, 2021, 1, 5808206, 2021.

[19] Y. Shi, H. Wang i S. Li, Ship detection algorithm based on structural reparameterize
dilated large-kernel convolution and spatial selective kernel mechanism, Journal of
Real-Time Image Processing, 22, 2,70, 2025.

[20] R. D. S. Moreira, N. F. Ebecken, A. S. Alves, F. Livernet i A. Campillo-Navetti, A
survey on video detection and tracking of maritime vessels, International Journal of
Recent Research and Applied Studies, 20, 1, 2014.

[21] B. Kiefer, M. Kristan, J. Pers, L. Zust, F. Poiesi, F. Andrade, A. Bernardino,
M. Dawkins, J. Raitoharju, Y. Quan et al., 1st workshop on maritime computer vision
(macvi) 2023: Challenge results, Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 265-302, 2023.

[22] X. Zhou, S. Chan, C. Qiu, X. Jiang i T. Tang, Multi-target tracking based on a com-
bined attention mechanism and occlusion sensing in a behavior-analysis system, Sen-
sors, 23, 6, 2956, 2023.

[23] P. Dendorfer, V. Yugay, A. Osep i1 L. Leal-Taixé, Quo vadis: Is trajectory forecasting
the key towards long-term multi-object tracking?, Advances in Neural Information
Processing Systems, 35, 15657-15671, 2022.

[24] B. Dominguez-Dager, F. Escalona, F. Gomez-Donoso i M. Cazorla, Chirla: Com-
prehensive high-resolution identification and re-identification for large-scale analysis,
arXiv preprint arXiv:2502.06681, 2025.

[25] S. Zhang, K. Zheng i S. Huaiyuan, Analysis of the occlusion interference problem in
target tracking, Mathematical Problems in Engineering, 2022, 1, 4605111, 2022.

[26] R. E. Kalman et al., Contributions to the theory of optimal control, Bol. soc. mat.
mexicana, 5,2, 102-119, 1960.

[27] J. Cao, J. Pang, X. Weng, R. Khirodkar 1 K. Kitani, Observation-centric sort: Rethin-
king sort for robust multi-object tracking, Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 9686—9696, 2023.

[28] D. M. Jiménez-Bravo, Alvaro Lozano Murciego, A. Sales Mendes, H. Sdnchez San
Blas 1 J. Bajo, Multi-object tracking in traffic environments: A systematic literature
review, Neurocomputing, 494, 43-55, 2022.

142



LITERATURA

[29] J. Ferryman i A. Shahrokni, Pets2009: Dataset and challenge, 2009 Twelfth IEEE
international workshop on performance evaluation of tracking and surveillance, 1-6,
IEEE, 20009.

[30] L. Leal-Taixé, A. Milan, I. Reid, S. Roth 1 K. Schindler, Motchallenge 2015: Towards
a benchmark for multi-target tracking, arXiv preprint arXiv:1504.01942, 2015.

[31] A. Milan, L. Leal-Taixé, I. Reid, S. Roth i K. Schindler, Mot16: A benchmark for
multi-object tracking, arXiv preprint arXiv:1603.00831, 2016.

[32] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, 1. Reid, S. Roth, K. Sc-
hindler i1 L. Leal-Taixe, Cvprl9 tracking and detection challenge: How crowded can
it get?, 2019.

[33] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, 1. Reid, S. Roth, K. Sc-
hindler i L. Leal-Taixé, Mot20: A benchmark for multi object tracking in crowded
scenes, arXiv preprint arXiv:2003.09003, 2020.

[34] A. Geiger, P. Lenz i R. Urtasun, Are we ready for autonomous driving? the kitti vision
benchmark suite, 2012 IEEE conference on computer vision and pattern recognition,

3354-3361, IEEE, 2012.

[35] A. Geiger, P. Lenz, C. Stiller i R. Urtasun, Vision meets robotics: The kitti dataset,
The International Journal of Robotics Research, 32, 11, 1231-1237, 2013.

[36] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi1, J. Lim, M.-H. Yang i S. Lyu,
Ua-detrac: A new benchmark and protocol for multi-object detection and tracking,
Computer Vision and Image Understanding, 193, 102907, 2020.

[37] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan i T. Darrell,
Bdd100k: A diverse driving dataset for heterogeneous multitask learning, Proce-

edings of the IEEE/CVF conference on computer vision and pattern recognition,
2636-2645, 2020.

[38] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine et al., Scalability in perception for autonomous driving:

Waymo open dataset, Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 24462454, 2020.

[39] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan 1 O. Beijbom, nuscenes: A multimodal dataset for autonomous driving,

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
11621-11631, 2020.

[40] Y. Liao, J. Xiei A. Geiger, Kitti-360: A novel dataset and benchmarks for urban scene
understanding in 2d and 3d, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45, 3, 3292-3310, 2022.

[41] Z. Soleimanitaleb i M. A. Keyvanrad, Single Object Tracking: A Survey of Methods,
Datasets, and Evaluation Metrics, 1-15, jan 2022.

[42] D.Meimetis, I. Daramouskas, 1. Perikos i I. Hatzilygeroudis, Real-time multiple object
tracking using deep learning methods, 35, Springer London, 2023.

143



LITERATURA

[43] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu i T. K. Kim, Multiple object tracking: A
literature review, Artificial Intelligence, 293, 103448, 2021.

[44] G. Ciaparrone, F. Luque Sanchez, S. Tabik, L. Troiano, R. Tagliaferri 1 F. Herrera,
Deep learning in video multi-object tracking: A survey, Neurocomputing, 381, 61—
88, 2020.

[45] H. Wang, S. Wang, J. Lv, C. Hu i Z. Li, Non-local attention association scheme for
online multi-object tracking, Image and Vision Computing, 102, 103983, 2020.

[46] X. Gao, Z. Wang, X. Wang, S. Zhang, S. Zhuang i H. Wang, Dettrack: An algorithm
for multiple object tracking by improving occlusion object detection, Electronics, 13,
1,91, 2023.

[47] Z. Sun, J. Chen, L. Chao, W. Ruan i M. Mukherjee, A survey of multiple pedestrian
tracking based on tracking-by-detection framework, /IEEE Transactions on Circuits
and Systems for Video Technology, 31, 5, 1819-1833, 2021.

[48] S. Guo, S. Wang, Z. Yang, L. Wang, H. Zhang, P. Guo, Y. Gao i J. Guo, A review of
deep learning-based visual multi-object tracking algorithms for autonomous driving,
Applied Sciences, 12, 21, 10741, 2022.

[49] S. Guo, S. Wang, Z. Yang, L. Wang, H. Zhang, P. Guo, Y. Gao i J. Guo, A Review
of Deep Learning-Based Visual Multi-Object Tracking Algorithms for Autonomous
Driving, Applied Sciences, 12, 21, 10741, oct 2022.

[50] W.Zhang, W. Deng, Z. Cui, J. Liu i L. Jiao, Object knowledge distillation for joint de-
tection and tracking in satellite videos, IEEE Transactions on Geoscience and Remote
Sensing, 2024.

[51] X. Gong, Z. Le, Y. Wu i H. Wang, Real-time multiobject tracking based on multiway
concurrency, Sensors, 21, 3, 2021.

[52] Z. Cao, J. Li, D. Zhang, M. Zhou i A. Abusorrah, A multi-object tracking algorithm
with center-based feature extraction and occlusion handling, IEEE Transactions on
Intelligent Transportation Systems, 24, 4, 44644473, 2022.

[53] Q. Wang, C. Lu, L. Gao i G. He, Transformer-based multiple-object tracking via
anchor-based-query and template matching, Sensors (Basel, Switzerland), 24, 2023.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser 1
I. Polosukhin, Attention is all you need, Advances in neural information processing
systems, 30, 2017.

[55] X. Zhu, Y. Jia, S. Jian, L. Gu 1 Z. R. Pu, Vitt: Vision transformer tracker, Sensors
(Basel, Switzerland), 21, 2021.

[56] T. Liu, P. Li, Y.-Z. Gu, P. Liu i H. Wang, Adaptive offloading of transformer infe-
rence for weak edge devices with masked autoencoders, ACM Transactions on Sensor
Networks, 2024.

[57] Y. Xu, Y. Ban, G. Delorme, C. Gan, D. Rus i X. Alameda-Pineda, Transcenter: Tran-
sformers with dense representations for multiple-object tracking, IEEE transactions
on pattern analysis and machine intelligence, 45, 6, 78207835, 2022.

144



LITERATURA

[58] A. Bewley, Z. Ge, L. Ott, F. Ramos i B. Upcroft, Simple online and realtime tracking,
2016 IEEE international conference on image processing (ICIP), 3464-3468, 1EEE,
2016.

[59] N. Wojke, A. Bewley i D. Paulus, Simple online and realtime tracking with a deep
association metric, 2017 IEEE international conference on image processing (ICIP),
3645-3649, IEEE, 2017.

[60] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu i X. Wang, Byte-
track: Multi-object tracking by associating every detection box, European Conference
on Computer Vision, 1-21, Springer, 2022.

[61] N. Aharon, R. Orfaig i B.-Z. Bobrovsky, Bot-sort: Robust associations multi-
pedestrian tracking, arXiv preprint arXiv:2206.14651, 2022.

[62] Y. Du, Z. Zhao, Y. Song, Y. Zhao, F. Su, T. Gong i H. Meng, Strongsort: Make
deepsort great again, IEEE Transactions on Multimedia, 2023.

[63] V. D. Stanojevic i B. T. Todorovic, Boosttrack: Boosting the similarity measure and
detection confidence for improved multiple object tracking, Machine Vision and Ap-
plications, 35, 3, 53, 2024.

[64] P. Bergmann, T. Meinhardt i L. Leal-Taixe, Tracking without bells and whistles, Pro-
ceedings of the IEEE/CVF international conference on computer vision, 941-951,
2019.

[65] X. Zhou, V. Koltun i P. Kridhenbiihl, Tracking objects as points, European conference
on computer vision, 474—490, Springer, 2020.

[66] Y.Zhang, C. Wang, X. Wang, W. Zeng i W. Liu, Fairmot: On the fairness of detection
and re-identification in multiple object tracking, International Journal of Computer
Vision, 129, 3069-3087, 2021.

[67] Z. Wang, L. Zheng, Y. Liu, Y. Li i S. Wang, Towards Real-Time Multi-Object
Tracking, Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part XI 16, 107-122, Springer, 2020.

[68] P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang i P. Luo, Transtrack:
Multiple object tracking with transformer, arXiv preprint arXiv:2012.15460, 2020.

[69] T.Meinhardt, A. Kirillov, L. Leal-Taixe i C. Feichtenhofer, Trackformer: Multi-object
tracking with transformers, Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 8844—-8854, 2022.

[70] P. Chu, J. Wang, Q. You, H. Ling i Z. Liu, Transmot: Spatial-temporal graph transfor-
mer for multiple object tracking, Proceedings of the IEEE/CVF Winter Conference on
applications of computer vision, 4870-4880, 2023.

[71] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger i B. Leibe,
Mots: Multi-object tracking and segmentation, Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, 7942—7951, 2019.

145



LITERATURA

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

J. Peng, C. Wang, F. Wan, Y. Wu, Y. Wang, Y. Tai, C. Wang, J. Li, F. Huang 1 Y. Fu,
Chained-tracker: Chaining paired attentive regression results for end-to-end joint
multiple-object detection and tracking, Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part IV 16, 145-161,
Springer, 2020.

Y. Xiao, Z. Tian, J. Yu, Y. Zhang, S. Liu, S. Dui X. Lan, A review of object detection
based on deep learning, Multimedia Tools and Applications, 79, 23729-23791, 2020.

L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng i R. Qu, A survey of deep learning-
based object detection, IEEE Access, 7, 128837-128868, 2019.

F. Yu, W. Li, Q. Li, Y. Liu, X. Shi i J. Yan, Poi: Multiple object tracking with high
performance detection and appearance feature, Computer Vision—-ECCV 2016 Work-
shops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings,
Part Il 14, 3642, Springer, 2016.

N. Ran, L. Kong, Y. Wang i Q. Liu, A robust multi-athlete tracking algorithm by explo-
iting discriminant features and long-term dependencies, MultiMedia Modeling: 25th
International Conference, MMM 2019, Thessaloniki, Greece, January 8—11, 2019,
Proceedings, Part I 25, 411-423, Springer, 2019.

Y. Lu, C. Lu i C.-K. Tang, Online video object detection using association Istm, Pro-
ceedings of the IEEE international conference on computer vision, 2344-2352, 2017.

D. Zhao, H. Fu, L. Xiao, T. Wu i B. Dai, Multi-object tracking with correlation filter
for autonomous vehicle, Sensors, 18, 7, 2004, 2018.

I. Ahmed, S. Din, G. Jeon, F. Piccialli 1 G. Fortino, Towards collaborative robotics in
top view surveillance: A framework for multiple object tracking by detection using
deep learning, IEEE/CAA Journal of Automatica Sinica, 8,7, 1253-1270, 2021.

J. Wu, J. Cao, L. Song, Y. Wang, M. Yang 1J. Yuan, Track to detect and segment: An
online multi-object tracker, Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 12352-12361, 2021.

T. Ogawa, T. Shibata 1 T. Hosoi, Frog-mot: Fast and robust generic multiple-object
tracking by iou and motion-state associations, Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 6563—-6572, 2024.

A. Moksyakov, Y. Wu, S. A. Gadsden, J. Yawney i M. AlShabi, Object detection and
tracking with yolo and the sliding innovation filter, Sensors (Basel, Switzerland), 24,
2024.

M. A. Islam, W. Xing, J. Zhou, Y. Gao i K. K. Paliwal, Hy-tracker: A novel framework
for enhancing efficiency and accuracy of object tracking in hyperspectral videos, IEEE
Transactions on Geoscience and Remote Sensing, 2024.

R. Girshick, J. Donahue, T. Darrell 1 J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, Proceedings of the IEEE conference on
computer vision and pattern recognition, 580-587, 2014.

146



LITERATURA

[85] R. Girshick, Fast r-cnn, Proceedings of the IEEE international conference on compu-
ter vision, 1440-1448, 2015.

[86] S. Ren, K. He, R. Girshick i J. Sun, Faster r-cnn: Towards real-time object detection

with region proposal networks, Advances in neural information processing systems,
28, 2015.

[87] K. He, G. Gkioxari, P. Dollar i R. Girshick, Mask r-cnn, Proceedings of the IEEE
international conference on computer vision, 2961-2969, 2017.

[88] J. Redmon, S. Divvala, R. Girshick i A. Farhadi, You only look once: Unified, real-
time object detection, Proceedings of the IEEE conference on computer vision and
pattern recognition, 779-788, 2016.

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu i A. C. Berg, Ssd:
Single shot multibox detector, Computer Vision—-ECCV 2016: 14th European Confe-
rence, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14,
21-37, Springer, 2016.

[90] T.-Y. Lin, P. Goyal, R. Girshick, K. He i P. Dollar, Focal loss for dense object de-
tection, Proceedings of the IEEE international conference on computer vision, 2980—
2988, 2017.

[91] X. Zhou, D. Wang i P. Krihenbiihl, Objects as points, arXiv preprint
arXiv:1904.07850, 2019.

[92] M. Tan, R. Pang i Q. V. Le, Efficientdet: Scalable and efficient object detection, Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
10781-10790, 2020.

[93] J. Xiang, G. Zhang i J. Hou, Online multi-object tracking based on feature repre-
sentation and bayesian filtering within a deep learning architecture, IEEE Access, 7,
27923-27935, 2019.

[94] N. Mahmoudi, S. M. Ahadi i M. Rahmati, Multi-target tracking using cnn-based fe-
atures: Cnnmtt, Multimedia Tools and Applications, 78, 6, 7077-7096, 2019.

[95] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier i L. Van Gool, Robust
tracking-by-detection using a detector confidence particle filter, 2009 IEEE 12th In-
ternational Conference on Computer Vision, 1515-1522, 2009.

[96] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier i L. Van Gool, Online mul-
tiperson tracking-by-detection from a single, uncalibrated camera, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33, 9, 1820-1833, 2011.

[97] T. Kokul, A. Ramanan i U. Pinidiyaarachchi, Online multi-person tracking-by-
detection method using acf and particle filter, 2015 IEEE Seventh International Con-
ference on Intelligent Computing and Information Systems (ICICIS), 529-536, 2015.

[98] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid i K. Schindler, Online multi-target trac-
king using recurrent neural networks, Proceedings of the AAAI conference on Artificial
Intelligence, 31, 2017.

147



LITERATURA

[99] M. Babaee, Z. Li i G. Rigoll, Occlusion handling in tracking multiple people using
rnn, 2018 25th IEEE International Conference on Image Processing (ICIP), 2715—
2719, 2018.

[100] C. Kim, F. Li i J. M. Rehg, Multi-object tracking with neural gating using bilinear
Istm, Proceedings of the European conference on computer vision (ECCV), 200-215,
2018.

[101] J. Yang, H. Ge, S. Sui G. Liu, Transformer-based two-source motion model for multi-
object tracking, Applied Intelligence, 1-13, 2022.

[102] M. Alapi¢ i I. Vel€i¢, 1zvod jednadzbi diskretnog kalmanovog filtera, Osjecki mate-
maticki list, 18, 2, 105-122, 2018.

[103] G. Welch, G. Bishop et al., An introduction to the kalman filter, 1995.

[104] Y. Du, J. Wan, Y. Zhao, B. Zhang, Z. Tong i J. Dong, Giaotracker: A comprehensive
framework for mcmot with global information and optimizing strategies in visdrone

2021, Proceedings of the IEEE/CVF International conference on computer vision,
2809-2819, 2021.

[105] G. L. Smith, S. F. Schmidt i L. A. McGee, Application of statistical filter theory to
the optimal estimation of position and velocity on board a circumlunar vehicle, 135,
National Aeronautics and Space Administration, 1962.

[106] S.J. Julier i J. K. Uhlmann, New extension of the kalman filter to nonlinear systems,
Signal processing, sensor fusion, and target recognition VI, 3068, 182—-193, Spie,
1997.

[107] E.N. Chatzii A. W. Smyth, The unscented kalman filter and particle filter methods for
nonlinear structural system identification with non-collocated heterogeneous sensing,
Structural Control and Health Monitoring: The Official Journal of the International
Association for Structural Control and Monitoring and of the European Association

for the Control of Structures, 16, 1, 99—-123, 2009.

[108] F. Gustafsson i G. Hendeby, Some relations between extended and unscented kalman
filters, IEEE Transactions on Signal Processing, 60, 2, 545-555, 2011.

[109] K. Gyorgy, A. Kelemen i L. David, Unscented kalman filters and particle filter met-
hods for nonlinear state estimation, Procedia Technology, 12, 65-74, 2014.

[110] A. Bera, D. Wolinski, J. Pettré i D. Manocha, Realtime pedestrian tracking and pre-
diction in dense crowds, Group and Crowd Behavior for Computer Vision, 391-415,
Elsevier, 2017.

[111] A. Basia, Z. Simeu-Abazi, E. Gascard i P. Zwolinski, Review on state of health es-
timation methodologies for lithium-ion batteries in the context of circular economy,
CIRP Journal of Manufacturing Science and Technology, 32, 517-528, 2021.

[112] C. Kim, F. Li, A. Ciptadi i J. M. Rehg, Multiple hypothesis tracking revisited, 2015
IEEE International Conference on Computer Vision (ICCV), 46964704, 2015.

148



LITERATURA

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S. Chaib, H. Liu, Y. Gu i H. Yao, Deep feature fusion for vhr remote sensing scene
classification, IEEE Transactions on Geoscience and Remote Sensing, 55, 8, 4775—
4784, 2017.

X. Cao, S. Guo, J. Lin, W. Zhang 1 M. Liao, Online tracking of ants based on
deep association metrics: method, dataset and evaluation, Pattern Recognition, 103,
107233, 2020.

W. Gong, H. Chen, Z. Zhang, M. Zhang i H. Gao, A data-driven-based fault diagnosis
approach for electrical power dc-dc inverter by using modified convolutional neural

network with global average pooling and 2-d feature image, leee Access, 8, 73677—
73697, 2020.

I. Marin, S. Mladenovié, S. Gotovac i G. Zaharija, Deep-feature-based approach to
marine debris classification, Applied Sciences, 11, 12, 5644, 2021.

K. P. ER.S., Liii. on lines and planes of closest fit to systems of points in space, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2,
11, 559-572, 1901.

M. Ullah i F. A. Cheikh, Deep feature based end-to-end transportation network for

multi-target tracking, 2018 25th IEEE international conference on image processing
(ICIP), 3738-3742, IEEE, 2018.

H. Sheng, Y. Zhang, J. Chen, Z. Xiong i J. Zhang, Heterogeneous association graph
fusion for target association in multiple object tracking, IEEE Transactions on Circuits
and Systems for Video Technology, 29, 11, 3269-3280, 2019.

L. Wen, D. Du, S. Li, X. Bian i S. Lyu, Learning non-uniform hypergraph for multi-
object tracking, Proceedings of the AAAI conference on artificial intelligence, 33,
8981-8988, 2019.

L. Chen, X. Peng i M. Ren, Recurrent metric networks and batch multiple hypothesis
for multi-object tracking, IEEE Access, 7, 3093-3105, 2018.

B. Shuai, A. G. Berneshawi, D. Modolo i J. Tighe, Multi-object tracking with siamese
track-rcnn, arXiv preprint arXiv:2004.07786, 2020.

S. Tang, M. Andriluka, B. Andres i B. Schiele, Multiple people tracking by lifted mul-
ticut and person re-identification, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi i C. C. Loy, Robust multi-modality multi-
object tracking, Proceedings of the IEEE/CVF international conference on computer
vision, 2365-2374, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li 1 L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, 2009 IEEE conference on computer vision and pattern
recognition, 248-255, Ieee, 2009.

J. Bromley, I. Guyon, Y. LeCun, E. Sickinger i R. Shah, Signature verification using
a" siamese" time delay neural network, Advances in neural information processing
systems, 6, 1993.

149



LITERATURA

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

R. Hadsell, S. Chopra i Y. LeCun, Dimensionality reduction by learning an invariant
mapping, 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), 2, 1735-1742, 2006.

F. Schroff, D. Kalenichenko i J. Philbin, Facenet: A unified embedding for face re-
cognition and clustering, Proceedings of the IEEE conference on computer vision and

pattern recognition, 815-823, 2015.

M. Kim, S. Alletto i L. Rigazio, Similarity mapping with enhanced siamese network
for multi-object tracking, arXiv preprint arXiv:1609.09156, 2016.

B. Wang, L. Wang, B. Shuai, Z. Zuo, T. Liu, K. L. Chan i G. Wang, Joint learning of
convolutional neural networks and temporally constrained metrics for tracklet associ-

ation, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 386-393, 2016.

L. Leal-Taixé, C. Canton-Ferrer i K. Schindler, Learning by tracking: Siamese cnn
for robust target association, Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, 33—40, 2016.

Z. Zhou, J. Xing, M. Zhang i W. Hu, Online multi-target tracking with tensor-based
high-order graph matching, 2018 24th International Conference on Pattern Recogni-
tion (ICPR), 1809-1814, IEEE, 2018.

L. Chen, H. Ai, Z. Zhuang 1 C. Shang, Real-time multiple people tracking with de-
eply learned candidate selection and person re-identification, 2018 IEEE international
conference on multimedia and expo (ICME), 1-6, IEEE, 2018.

S. Zhang, Y. Gong, J.-B. Huang, J. Lim, J. Wang, N. Ahuja i M.-H. Yang, Tracking
persons-of-interest via adaptive discriminative features, B. Leibe, J. Matas, N. Sebe i
M. Welling, editori, Computer Vision — ECCV 2016, 415-433, Springer International
Publishing, Cham, 2016.

S.-H. Bae 1 K.-J. Yoon, Confidence-based data association and discriminative deep
appearance learning for robust online multi-object tracking, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40, 3, 595-610, 2018.

E. Bochinski, V. Eiselein i T. Sikora, High-speed tracking-by-detection without using
image information, 2017 14th IEEFE international conference on advanced video and
signal based surveillance (AVSS), 1-6, IEEE, 2017.

D. Stadler, A detailed study of the association task in tracking-by-detection-based
multi-person tracking, Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB
and Institute for Anthropomatics, Vision and Fusion Laboratory, 62, 59-85, KIT
Scientific Publishing Karlsruhe, Germany, 2023.

M. P. Chandra et al., On the generalised distance in statistics, Proceedings of the
National Institute of Sciences of India, 2,49-55, 1936.

D. Stadler i J. Beyerer, An improved association pipeline for multi-person tracking,
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
3170-3179, 2023.

150



LITERATURA

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

H. W. Kuhn, The hungarian method for the assignment problem, Naval research lo-
gistics quarterly, 2, 1-2, 83-97, 1955.

J. Munkres, Algorithms for the assignment and transportation problems, Journal of
the society for industrial and applied mathematics, 5, 1, 32-38, 1957.

B. Wu i R. Nevatia, Tracking of multiple, partially occluded humans based on static
body part detection, 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), 1,951-958, 2006.

C. Kim, L. Fuxin, M. Alotaibi i J. M. Rehg, Discriminative appearance modeling with
multi-track pooling for real-time multi-object tracking, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 9553-9562, 2021.

H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki i S. Carlsson, From generic to
specific deep representations for visual recognition, Proceedings of the IEEE confe-
rence on computer vision and pattern recognition workshops, 36-45, 2015.

H. Liu, H. Zhang i C. Mertz, Deepda: Lstm-based deep data association network for
multi-targets tracking in clutter, 2019 22th International Conference on Information
Fusion (FUSION), 1-8, IEEE, 2019.

K. Yoon, D. Y. Kim, Y.-C. Yoon i M. Jeon, Data association for multi-object tracking
via deep neural networks, Sensors, 19, 3, 559, 2019.

M. M. Morsali, Z. Sharifi, F. Fallah, S. Hashembeiki, H. Mohammadzade i S. B.
Shouraki, Sfsort: Scene features-based simple online real-time tracker, arXiv preprint
arXiv:2404.07553, 2024.

M. Yang, G. Han, B. Yan, W. Zhang, J. Qi, H. Lu i D. Wang, Hybrid-sort: Weak
cues matter for online multi-object tracking, Proceedings of the AAAI conference on
artificial intelligence, 38, 6504—6512, 2024.

G. D. Evangelidis i E. Z. Psarakis, Parametric image alignment using enhanced corre-
lation coefficient maximization, IEEE transactions on pattern analysis and machine
intelligence, 30, 10, 1858-1865, 2008.

H. Luo, W. Jiang, Y. Gu, F. Liu, X. Liao, S. Lai i J. Gu, A strong baseline and batch
normalization neck for deep person re-identification, IEEE Transactions on Multime-
dia, 22, 10, 2597-2609, 2019.

H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller,
R. Manmatha et al., Resnest: Split-attention networks, Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 27362746, 2022.

G. Maggiolino, A. Ahmad, J. Cao i K. Kitani, Deep oc-sort: Multi-pedestrian trac-
king by adaptive re-identification, 2023 IEEE International conference on image pro-
cessing (ICIP), 3025-3029, IEEE, 2023.

K. Bernardin i1 R. Stiefelhagen, Evaluating multiple object tracking performance: the
clear mot metrics, EURASIP Journal on Image and Video Processing, 2008, 1-10,
2008.

151



LITERATURA

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]
[165]

[166]

[167]

J. Luiten, A. OSep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé i B. Leibe, Hota:
A higher order metric for evaluating multi-object tracking, International Journal of
Computer Vision, 129, 2, 548-578, listopad 2020.

E. Ristani, F. Solera, R. Zou, R. Cucchiara i C. Tomasi, Performance measures and
a data set for multi-target, multi-camera tracking, European conference on computer
vision, 17-35, Springer, 2016.

T. Wang, K. Chen, W. Lin, J. See, Z. Zhang, Q. Xu i X. Jia, Spatio-temporal po-
int process for multiple object tracking, IEEE Transactions on Neural Networks and
Learning Systems, 34, 4, 1777-1788, travanj 2023.

N.-D. Nguyen, T. Do, T. D. Ngo i D.-D. Le, An evaluation of deep learning methods
for small object detection, Journal of electrical and computer engineering, 2020, 1,
3189691, 2020.

Q. Feng, X. Xu i Z. Wang, Deep learning-based small object detection: A survey,
Mathematical Biosciences and Engineering, 20, 4, 6551-6590, 2023.

R. Sapkota, R. Qureshi, M. F. Calero, C. Badjugar, U. Nepal, A. Poulose, P. Zeno,
U. B. P. Vaddevolu, S. Khan, M. Shoman et al., Yolovl1 to its genesis: a decadal

and comprehensive review of the you only look once (yolo) series, arXiv preprint
arXiv:2406.19407, 2025.

L. Zhang, G. Ding, G. Li, Y. Jiang, Z. Li 1 D. Li, An anti-occlusion optimization
algorithm for multiple pedestrian tracking, PLoS one, 19, 1, €0291538, 2024.

P. Sun, J. Cao, Y. Jiang, Z. Yuan, S. Bai, K. Kitani i P. Luo, Dancetrack: Multi-object
tracking in uniform appearance and diverse motion, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 20993-21002, 2022.

W. Zhan, W. Yu, Y. Wang, T. Hu i B. Zhu, E-gnn: An enhanced method for multi-
object tracking with collective motion patterns, IEEE Robotics and Automation Let-
ters, 9, 4, 3403-3410, 2024.

A. Krizhevsky, G. Hinton et al., Learning multiple layers of features from tiny images,
20009.

G. Griffin, A. Holub i P. Perona, Caltech-256 object category dataset, 2007.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn i A. Zisserman, The pascal
visual object classes (voc) challenge, International journal of computer vision, 88,
303-338, 2010.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollér i C. L.
Zitnick, Microsoft coco: Common objects in context, Computer Vision—-ECCV 2014

13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13,740-755, Springer, 2014.

M. M. Zhang, J. Choi, K. Daniilidis, M. T. Wolf i C. Kanan, Vais: A dataset for
recognizing maritime imagery in the visible and infrared spectrums, Proceedings of

the IEEE conference on computer vision and pattern recognition workshops, 10-16,
2015.

152



LITERATURA

[168] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally i C. Quek, Video processing
from electro-optical sensors for object detection and tracking in a maritime envi-

ronment: A survey, I[EEE Transactions on Intelligent Transportation Systems, 18, 8,
1993-2016, 2017.

[169] E. Gundogdu, B. Solmaz, V. Yiicesoy i A. Koc, Marvel: A large-scale image dataset
for maritime vessels, Computer Vision-ACCV 2016: 13th Asian Conference on Com-
puter Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part V
13, 165-180, Springer, 2017.

[170] Z. Shao, W. Wu, Z. Wang, W. Du i C. Li, Seaships: A large-scale precisely annotated
dataset for ship detection, IEEE transactions on multimedia, 20, 10, 2593-2604, 2018.

[171] Kaggle, Game of deep learning ship dataset, 2019, https://www.kaggle.
com/datasets/arpitjain007/game-of-deep-learning-ship-datasets, [Zad-
nji pristup: 12. oZzujka 2025.].

[172] Y. Zheng 1 S. Zhang, Mcships: A large-scale ship dataset for detection and fine-
grained categorization in the wild, 2020 IEEE International Conference on Multi-
media and Expo (ICME), 1-6, IEEE, 2020.

[173] Z. Shao, J. Wang, L. Deng, X. Huang, T. Lu, F. Luo, R. Zhang, X. Lv, C. Dang,
Q. Ding et al., Glsd: The global large-scale ship database and baseline evaluations,
arXiv preprint arXiv:2106.02773, 2021.

[174] Y. Shan, S. Liu, Y. Zhang, M. Jing i H. Xu, Lmd-tship: vision based large-scale mari-
time ship tracking benchmark for autonomous navigation applications, IEEE Access,
9, 74370-74384, 2021.

[175] M. Ribeiro, B. Damas i A. Bernardino, Real-time ship segmentation in maritime sur-
veillance videos using automatically annotated synthetic datasets, Sensors, 22, 21,
8090, 2022.

[176] M. Petkovié, I. Vujovi¢, Z. Lusic¢ i J. Soda, Image dataset for neural network perfor-

mance estimation with application to maritime ports, Journal of marine science and
engineering, 11, 3, 578, 2023.

[177] Y. Guo, R. W. Liu, J. Qu, Y. Lu, F. Zhu i Y. Lv, Asynchronous trajectory matching-
based multimodal maritime data fusion for vessel traffic surveillance in inland wa-

terways, IEEE Transactions on Intelligent Transportation Systems, 24, 11, 12779—
12792, 2023.

[178] N. Wang, Y. Wang, Y. Wei, B. Han i Y. Feng, Marine vessel detection dataset and
benchmark for unmanned surface vehicles, Applied Ocean Research, 142, 103835,
2024.

[179] H. Fu, Y. Li, Y. Wang i L. Han, Maritime target detection method based on deep lear-
ning, 2018 IEEE International Conference on Mechatronics and Automation (ICMA ),
878-883, 2018.

[180] K. He, X. Zhang, S. Ren iJ. Sun, Deep residual learning for image recognition, Proce-
edings of the IEEE conference on computer vision and pattern recognition, 770-778,
2016.

153


https://www.kaggle.com/datasets/arpitjain007/game-of-deep-learning-ship-datasets
https://www.kaggle.com/datasets/arpitjain007/game-of-deep-learning-ship-datasets

LITERATURA

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

S. Ioffe i C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, International conference on machine learning, 448—
456, pmlr, 2015.

J. Zou, W. Yuan i M. Yu, Maritime target detection of intelligent ship based on faster
r-cnn, 2019 Chinese Automation Congress (CAC), 4113-4117, 2019.

L. Qi, B. Li, L. Chen, W. Wang, L. Dong, X. Jia, J. Huang, C. Ge, G. Xue i D. Wang,
Ship target detection algorithm based on improved faster r-cnn, Electronics, 8, 9, 959,
2019.

S.-J. Lee, M.-1. Roh, H.-W. Lee, J.-S. Ha i I.-G. Woo, Image-based ship detection and
classification for unmanned surface vehicle using real-time object detection neural
networks, ISOPE International Ocean and Polar Engineering Conference, ISOPE-I,
ISOPE, 2018.

Y. Li, J. Guo, X. Guo, K. Liu, W. Zhao, Y. Luo i Z. Wang, A novel target detec-
tion method of the unmanned surface vehicle under all-weather conditions with an
improved yolov3, Sensors, 20, 17, 4885, 2020.

G. Huang, Z. Liu, L. Van Der Maaten i K. Q. Weinberger, Densely connected convolu-
tional networks, Proceedings of the IEEE conference on computer vision and pattern
recognition, 4700-4708, 2017.

J. Zhang, J. Jin, Y. Ma i P. Ren, Lightweight object detection algorithm based on
yolov5 for unmanned surface vehicles, Frontiers in marine science, 9, 1058401, 2023.

K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu i C. Xu, Ghostnet: More features from cheap
operations, Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 1580-1589, 2020.

Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye 1 D. Ren, Distance-iou loss: Faster and better
learning for bounding box regression, Proceedings of the AAAI conference on artificial
intelligence, 34, 12993-13000, 2020.

M. Cafaro, I. Epicoco, M. Pulimeno i E. Sansebastiano, Toward enhanced support for
ship sailing, IEEE Access, 11, 87047-87061, 2023.

W. Wu, X. Li, Z. Hu i X. Liu, Ship detection and recognition based on improved
yolov7, Comput. Mater. Contin, 76, 1, 489-498, 2023.

Z. Jiang, L. Sui Y. Sun, Yolov7-ship: A lightweight algorithm for ship object detec-
tion in complex marine environments, Journal of Marine Science and Engineering,

12, 1, 190, 2024.

X. Jiang, J. Cai i B. Wang, Yoloseaship: a lightweight model for real-time ship detec-
tion, European Journal of Remote Sensing, 57, 1, 2307613, 2024.

Y. Jin, P. Wang, S. Liu, K. Xue, Q. Lii H. Wang, Yolo-gcv: a lightweight algorithm for
ship object detection in complex inland waterway environments, Journal of Real-Time
Image Processing, 22, 1, 32, 2025.

154



LITERATURA

[195] X.Zhao1i Y. Song, Improved ship detection with yolov8 enhanced with mobilevit and
gsconv, Electronics, 12, 22, 4666, 2023.

[196] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov i L.-C. Chen, Mobilenetv2: Inverted
residuals and linear bottlenecks, Proceedings of the IEEE conference on computer
vision and pattern recognition, 4510-4520, 2018.

[197] H. Li, J. Li, H. Wei, Z. Liu, Z. Zhan 1 Q. Ren, Slim-neck by gsconv: A better
design paradigm of detector architectures for autonomous vehicles, arXiv preprint
arXiv:2206.02424, 10, 2022.

[198] K. Cheng, M. Song, Y. Xu, L. Zhuo, X. Yan, S. Zheng, Z. Yang, J. Huang, H. Song
1 S. Gao, Yolo-fe: A lightweight ship detection algorithm based on improved yolovs,
2023 5th International Conference on Robotics, Intelligent Control and Artificial In-
telligence (RICAI), 1082—-1087, IEEE, 2023.

[199] J. Chen, S.-h. Kao, H. He, W. Zhuo, S. Wen, C.-H. Lee 1 S.-H. G. Chan, Run, don’t
walk: chasing higher flops for faster neural networks, Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 12021-12031, 2023.

[200] D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan i Z. Huang, Efficient multi-scale
attention module with cross-spatial learning, ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 1-5, IEEE, 2023.

[201] S. Wang, Y. Lii S. Qiao, Alf-yolo: Enhanced yolov8 based on multiscale attention
feature fusion for ship detection, Ocean Engineering, 308, 118233, 2024.

[202] G. Yang,J. Lei, Z. Zhu, S. Cheng, Z. Feng i R. Liang, Afpn: Asymptotic feature pyra-
mid network for object detection, 2023 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2184-2189, 1EEE, 2023.

[203] D. Yang, M. L. Solihin, I. Ardiyanto, Y. Zhao, W. Li, B. Cai i C. Chen, A streamli-
ned approach for intelligent ship object detection using el-yolo algorithm, Scientific
Reports, 14, 1, 15254, 2024.

[204] Y. Yuan, X. Yu, X. Rong i X. Wang, Aff-lightnet: A lightweight ship detection arc-
hitecture based on attentional feature fusion, Journal of Marine Science and Engine-
ering, 13, 1, 44, 2025.

[205] Z. Gevorgyan, Siou loss: More powerful learning for bounding box regression, arXiv
preprint arXiv:2205.12740, 2022.

[206] M. Liui C. Zhu, Residual yolox-based ship object detection method, 2022 2nd Inter-
national Conference on Consumer Electronics and Computer Engineering (ICCECE),
427-431, 1EEE, 2022.

[207] B. Iancu, J. Winsten, V. Soloviev 1 J. Lilius, A benchmark for maritime object detec-
tion with centernet on an improved dataset, aboships-plus, Journal of Marine Science
and Engineering, 11,9, 1638, 2023.

[208] A. Li, X. Zhu, S. He i J. Xia, Water surface object detection using panoramic vision
based on improved single-shot multibox detector, EURASIP Journal on Advances in
Signal Processing, 2021, 1-15, 2021.

155



LITERATURA

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

K. Simonyan i A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv preprint arXiv:1409.1556, 2014.

S. Moosbauer, D. Konig, J. Jakel i M. Teutsch, A benchmark for deep learning based
object detection in maritime environments, Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops, 0-0, 2019.

N. Wang, Y. Wang, Y. Feng i Y. Wei, Aodemar: Attention-aware occlusion detection
of vessels for maritime autonomous surface ships, IEEE Transactions on Intelligent
Transportation Systems, 2024.

C. Zhao, R. W. Liu, J. Qu i R. Gao, Deep learning-based object detection in maritime
unmanned aerial vehicle imagery: Review and experimental comparisons, Engine-
ering Applications of Artificial Intelligence, 128, 107513, 2024.

A. Correira, F. Ferreira i N. Miskovi¢, Comparing different yolo versions for boat
detection and classification in real datasets, OCEANS 2024-Singapore, 1-4, 1EEE,
2024.

D. Heller, M. Rizk, R. Douguet, A. Baghdadi i J.-P. Diguet, Marine objects detection
using deep learning on embedded edge devices, 2022 IEEE International Workshop
on Rapid System Prototyping (RSP), 1-7, 2022.

M. Kristan, V. S. Kenk, S. Kovacic i J. Pers, Fast image-based obstacle detection from
unmanned surface vehicles, IEEE transactions on cybernetics, 46, 3, 641-654, 2015.

M. Kristan, J. Pers, V. Suli¢ i S. Kovacic¢, A graphical model for rapid obstacle image-
map estimation from unmanned surface vehicles, Computer Vision-ACCV 2014: 12th
Asian Conference on Computer Vision, Singapore, Singapore, November 1-5, 2014,
Revised Selected Papers, Part Il 12, 391-406, Springer, 2015.

Y. Jie, L. Leonidas, F. Mumtaz i M. Ali, Ship detection and tracking in inland wa-
terways using improved yolov3 and deep sort, Symmetry, 13, 2, 308, 2021.

Z.7Zhou, J. Zhao, X. Chen i Y. Chen, A ship tracking and speed extraction framework
in hazy weather based on deep learning, Journal of Marine Science and Engineering,
11,7, 1353, 2023.

Y. Li, H. Yuan, Y. Wang 1 B. Zhang, Maritime vessel detection and tracking under
uav vision, 2022 International Conference on Artificial Intelligence and Computer
Information Technology (AICIT), 1-4, IEEE, 2022.

J. Liu 1 C. Li, Maritime video ship detection and tracking based on improved yolox
and deepsort, Journal of Electronic Imaging, 32, 1, 013042-013042, 2023.

B. Qi, P. Zhang i W. Huang, Research on improved yolo and deepsort ship detec-
tion and tracking algorithms, 2024 IEEE 4th International Conference on Electronic
Technology, Communication and Information (ICETCI), 816-819, IEEE, 2024.

X. Chen, M. Wang, J. Ling, H. Wu, B. Wu 1 C. Li, Ship imaging trajectory extrac-
tion via an aggregated you only look once (yolo) model, Engineering Applications of
Artificial Intelligence, 130, 107742, 2024.

156



LITERATURA

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

G. Zhang, J. Liu, Y. Zhao, W. Luo, K. Mei, P. Wang, Y. Song i X. Li, A reliable
unmanned aerial vehicle multi-ship tracking method, PloS one, 20, 1, 0316933, 2025.

C. Wu, Y. Song i Q. Ge, Maritime ship tracking algorithm based on improved yolov8
and strongsort, 2024 IEEE International Conference on Unmanned Systems (ICUS),
1043-1048, 1IEEE, 2024.

Y.-S. HaniJ.-Y. Jung, A stable multi-object tracking method for unstable and irregular
maritime environments., Journal of Marine Science & Engineering, 12, 12, 2024.

F. Yang, S. Odashima, S. Masui i S. Jiang, Hard to track objects with irregular motions
and similar appearances? make it easier by buffering the matching space, Proceedings
of the IEEE/CVF winter conference on applications of computer vision, 4799-4808,
2023.

K. Hao, Z. Deng, B. Wang, Z. Jin, Z. Li i X. Zhao, Lightweight multiobject ship
tracking algorithm based on trajectory association and improved yolov7tiny, Expert
Systems with Applications, 259, 125129, 2025.

K. Zhou, Y. Yang, A. Cavallaro i T. Xiang, Omni-scale feature learning for person

re-identification, Proceedings of the IEEE/CVF international conference on computer
vision, 3702-3712, 2019.

B. Xing, W. Wang, J. Qian, C. Pan i Q. Le, A lightweight model for real-time moni-
toring of ships, Electronics, 12, 18, 3804, 2023.

Y. Chen, Z. Chen, Z. Zhang i S. Bian, Adaptrack: An adaptive fairmot tracking method
applicable to marine ship targets, Al Communications, 36, 2, 127-145, 2023.

S. Zou, J. Liu 1 W. Dai, An anti-occlusion ship tracking method based on yolox and
improved matching algorithm, 2025 2nd International Conference on Electronic En-
gineering and Information Systems (EEISS), 1-5, IEEE, 2025.

S. Zou, J. Liu, X. Zhang, Z. Wu, J. Liu i B. Han, Joint feature representation optimiza-
tion and anti-occlusion for robust multi-vessel tracking in inland waterways, Complex
& Intelligent Systems, 11,7, 294, 2025.

J. Wu, C. Cao, Y. Zhou, X. Zeng, Z. Feng, Q. Wu i Z. Huang, Multiple ship tracking
in remote sensing images using deep learning, Remote Sensing, 13, 18, 3601, 2021.

H. Park, S.-H. Ham, T. Kim i D. An, Object recognition and tracking in moving videos
for maritime autonomous surface ships, Journal of Marine Science and Engineering,
10, 7, 841, 2022.

G. Wang, Z. Wen, T. Wu, Y. Qian i Q. Pan, Knowledge-assisted intelligent mari-
time multi-ship tracking, 2023 China Automation Congress (CAC), 2971-2976, IEEE,
2023.

J. Cen, J.-H. Chen, X. Liu, J.-X. Li, H.-S. Li, W.-S. Huang i J.-X. Kang, A lightweight
multi-target ship tracking model based on yolov7, Physica Scripta, 99, 3, 035010,
2024.

157



LITERATURA

[237] Y. Shan, X. Zhou, S. Liu, Y. Zhang i K. Huang, Siamfpn: A deep learning method
for accurate and real-time maritime ship tracking, IEEE Transactions on Circuits and
Systems for Video Technology, 31, 1, 315-325, 2020.

[238] W.Luo, Y. XiaiT. He, Video-based identification and prediction techniques for stable
vessel trajectories in bridge areas, Sensors, 24, 2, 372, 2024.

[239] X. Yang, H. Zhu, H. Zhao 1 D. Yang, Coastal ship tracking with memory-guided
perceptual network, Remote Sensing, 15, 12, 3150, 2023.

[240] N. Karaev, 1. Rocco, B. Graham, N. Neverova, A. Vedaldi i C. Rupprecht, Cotracker:
It is better to track together, arXiv preprint arXiv:2307.07635, 2023.

[241] D. Stadler i J. Beyerer, Improving multiple pedestrian tracking by track management
and occlusion handling, Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 10958-10967, 2021.

[242] S. Han, H. Wang, E. Yu 1 Z. Hu, Ort: Occlusion-robust for multi-object tracking,
Fundamental Research, 2023.

[243] Z. Sun, J. Chen, M. Mukherjee, W. Ruan, C. Liang, Y. Yu i D. Zhang, Long-short term
prediction for occluded multiple object tracking, 2021 IEEE Global Communications
Conference (GLOBECOM), 1-6, IEEE, 2021.

[244] X. Tan, Z. Li, Q. Liang, W. Sun, Y. Wang i D. Zhang, Sequence-tracker: Multiple
object tracking with sequence features in severe occlusion scene, Journal of Visual
Communication and Image Representation, 79, 103250, 2021.

[245] X. GaoiT. Jiang, Osmo: Online specific models for occlusion in multiple object trac-
king under surveillance scene, Proceedings of the 26th ACM international conference
on Multimedia, 201-210, 2018.

[246] R. Zhao, X. Zhang i J. Zhang, Psmot: Online occlusion-aware multi-object tracking
exploiting position sensitivity, Sensors, 24, 4, 1199, 2024.

[247] K. He, X. Zhang, S. Ren i J. Sun, Spatial pyramid pooling in deep convolutional
networks for visual recognition, IEEE transactions on pattern analysis and machine
intelligence, 37,9, 1904-1916, 2015.

[248] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin i B. Guo, Swin transformer:
Hierarchical vision transformer using shifted windows, Proceedings of the IEEE/CVF
international conference on computer vision, 10012-10022, 2021.

[249] X. Chen, X. Xu, Y. Yang, H. Wu, J. Tang i J. Zhao, Augmented ship tracking under oc-
clusion conditions from maritime surveillance videos, IEEE Access, 8, 42884—-42897,
2020.

[250] S. Chen, M. Gao, P. Shi, X. Zeng i A. Zhang, Target ship recognition and tracking
with data fusion based on bi-yolo and oc-sort algorithms for enhancing ship navigation
assistance, Journal of Marine Science and Engineering, 13, 2, 366, 2025.

[251] M. Zhang i Z. Zhang, Research on vehicle target detection method based on improved
yolov8, Applied Sciences, 15, 10, 5546, 2025.

158



LITERATURA

[252] H. Perreault, G.-A. Bilodeau, N. Saunier i M. Héritier, Ffavod: Feature fusion archi-
tecture for video object detection, Pattern Recognition Letters, 151, 294-301, 2021.

[253] Z. Zhang, C. Lan, W. Zeng 1 Z. Chen, Multi-granularity reference-aided attentive fe-
ature aggregation for video-based person re-identification, Proceedings of the IEEE/-
CVF conference on computer vision and pattern recognition, 10407-10416, 2020.

[254] L. Zhu, T. Chen, D. Ji, J. Ye i J. Liu, Not every patch is needed: Towards a more
efficient and effective backbone for video-based person re-identification, /IEEE Tran-
sactions on Image Processing, 2025.

[255] D. Komorcec i D. Matika, Small crafts role in maritime traffic and detection by tech-
nology integration, Pomorstvo, 30, 1, 3—-11, 2016.

[256] M. Petkovié, I. Vujovié, N. Kastelan i J. Soda, Every vessel counts: Neural network
based maritime traffic counting system, Sensors, 23, 15, 6777, 2023.

[257] D. Technology, Dahua tpc-pt8620a-tb, 2023, https://material.dahuasecurity.
com/product/20180320/DH-TPC-PT8620A-T_Datasheet_20180320.pdf, [Zad-
nji pristup: 31. kolovoza 2025.].

[258] Lucka uprava Split, Bazen — gradska luka, https://portsplit.hr/luka-split/
lucka-podrucja/bazen-gradska-1luka/, [Zadnji pristup: 4. rujna 2025.].

[259] CVAT.ai, Cvat: Computer vision annotation tool, 2024, open-source software for com-
puter vision data annotation, https://www.cvat.ai [Zadnji pristup: 6. rujna 2025.].

[260] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang i Q. Tian, Scalable person re-
identification: A benchmark, Proceedings of the IEEE international conference on
computer vision, 1116-1124, 2015.

[261] Z.Zheng, L. Zhengi Y. Yang, Unlabeled samples generated by gan improve the person
re-identification baseline in vitro, Proceedings of the IEEE international conference
on computer vision, 3754-3762, 2017.

[262] L. Wei, S. Zhang, W. Gao i Q. Tian, Person transfer gan to bridge domain gap for
person re-identification, Proceedings of the IEEE conference on computer vision and
pattern recognition, 79-88, 2018.

[263] W. Li, R. Zhao i X. Wang, Human reidentification with transferred metric learning,
Asian conference on computer vision, 31-44, Springer, 2012.

[264] W. Li, R. Zhao, T. Xiao i X. Wang, Deepreid: Deep filter pairing neural network for
person re-identification, Proceedings of the IEEE conference on computer vision and
pattern recognition, 152—159, 2014.

[265] C. Guo, Y. Lui T. Ikenaga, Multiple likelihood models based particle filter for long-
term full occlusion, The Journal of the Institute of Image Electronics Engineers of
Japan, 39, 5, 580-589, 2010.

[266] N. Dalal i B. Triggs, Histograms of oriented gradients for human detection, 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), 1, 886-893 vol. 1, 2005.

159


https://material.dahuasecurity.com/product/20180320/DH-TPC-PT8620A-T_Datasheet_20180320.pdf
https://material.dahuasecurity.com/product/20180320/DH-TPC-PT8620A-T_Datasheet_20180320.pdf
https://portsplit.hr/luka-split/lucka-podrucja/bazen-gradska-luka/
https://portsplit.hr/luka-split/lucka-podrucja/bazen-gradska-luka/
https://www.cvat.ai

LITERATURA

[267] D. G. Lowe, Object recognition from local scale-invariant features, Proceedings of

the seventh IEEE international conference on computer vision, 2, 1150-1157, leee,
1999.

[268] H. Bay, T. Tuytelaars i L. Van Gool, Surf: Speeded up robust features, Lecture notes
in computer science, 3951, 404—417, 2006.

[269] P. Violai M. Jones, Rapid object detection using a boosted cascade of simple features,
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, 1, 1-1, 2001.

[270] W. Chen, J. Luo, F. Zhang i Z. Tian, A review of object detection: Datasets, perfor-
mance evaluation, architecture, applications and current trends, Multimedia Tools and
Applications, 83, 24, 65603-65661, 2024.

[271] X. Wu, D. Sahoo i S. C. Hoi, Recent advances in deep learning for object detection,
Neurocomputing, 396, 39-64, 2020.

[272] J. Redmon i A. Farhadi, Yolo9000: better, faster, stronger, Proceedings of the IEEE
conference on computer vision and pattern recognition, 72637271, 2017.

[273] J. Redmon i A. Farhadi, Yolov3: An incremental improvement, arXiv preprint
arXiv:1804.02767, 2018.

[274] A. Bochkovskiy, C.-Y. Wang i H.-Y. M. Liao, Yolov4: Optimal speed and accuracy of
object detection, arXiv preprint arXiv:2004.10934, 2020.

[275] G. Jocher, Ultralytics yolov5, 2020, https://github.com/ultralytics/yolovb,
[Zadnji pristup: 10. rujna 2025.].

[276] G. Jocher, A. Chaurasia i J. Qiu, Ultralytics yolov8, 2023, https://github.com/
ultralytics/ultralytics, [Zadnji pristup: 10. rujna 2025.].

[277] C.-Y. Wang, I.-H. Yeh 1 H.-Y. M. Liao, Yolov9: Learning what you want to learn using
programmable gradient information, arXiv preprint arXiv:2402.13616, 2024.

[278] X. Long, K. Deng, G. Wang, Y. Zhang, Q. Dang, Y. Gao, H. Shen, J. Ren, S. Han,
E. Ding et al., Pp-yolo: An effective and efficient implementation of object detector,
arXiv preprint arXiv:2007.12099, 2020.

[279] C.-Y. Wang, 1.-H. Yeh 1 H.-Y. M. Liao, You only learn one representation: Unified
network for multiple tasks, arXiv preprint arXiv:2105.04206, 2021.

[280] Z. Ge, S. Liu, F. Wang, Z. Li i J. Sun, Yolox: Exceeding yolo series in 2021, arXiv
preprint arXiv:2107.08430, 2021.

[281] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke 1 A. Rabinovich, Going deeper with convolutions, Proceedings of the IEEE
conference on computer vision and pattern recognition, 1-9, 2015.

[282] S.Lloyd, Least squares quantization in pcm, IEEE transactions on information theory,
28,2, 129-137, 1982.

160


https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

LITERATURA

[283] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan i S. Belongie, Feature pyramid
networks for object detection, Proceedings of the IEEE conference on computer vision
and pattern recognition, 2117-2125, 2017.

[284] Y. Tian, Q. Ye i D. Doermann, Yolov12: Attention-centric real-time object detectors,
arXiv preprint arXiv:2502.12524, 2025.

[285] S. Aharon, Louis-Dupont, Ofri Masad, K. Yurkova, Lotem Fridman, Lkdci, E. Khved-
chenya, R. Rubin, N. Bagrov, B. Tymchenko, T. Keren, A. Zhilko i Eran-Deci, Super-
gradients, 2021, https://github.com/Deci-AI/super-gradients, [Zadnji pris-
tup: 10. rujna 2025.].

[286] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai i S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox 1 R. Garnett, editori, Advances in Neural
Information Processing Systems 32, 8024—8035, Curran Associates, Inc., 2019.

[287] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar i B. Lee, A survey of
modern deep learning based object detection models, Digital Signal Processing, 126,
103514, 2022.

[288] G. JocheriJ. Qiu, Ultralytics yolo11, 2024.

[289] N. Jegham, C. Y. Koh, M. Abdelatti i A. Hendawi, Yolo evolution: A comprehensive
benchmark and architectural review of yolov12, yolo11, and their previous versions,
arXiv preprint arXiv:2411.00201, 2024.

[290] Y. Qu, C. Wang, Y. Xiao, H. Ju i J. Wu, Dynamically optimized object detection
algorithms for aviation safety, Electronics, 14, 17, 3536, 2025.

[291] R. Khanam i M. Hussain, Yolovl1l: An overview of the key architectural enhance-
ments, arXiv preprint arXiv:2410.17725, 2024.

[292] Ultralytics, Yolovll documentation, https://docs.ultralytics.com/models/
yololl/, 2024, [Zadnji pristup: 10. rujna 2025.].

[293] R. Sapkota, Z. Meng, M. Churuvija, X. Du, Z. Ma i M. Karkee, Comprehensive per-
formance evaluation of yolov12, yolo11, yolov10, yolov9 and yolov8 on detecting and
counting fruitlet in complex orchard environments, arXiv preprint arXiv:2407.12040,
2024.

[294] N. Simic i A. Gavrovska, Comparative analysis of yolovll and yolovl2 for ai-
powered aerial people detection, 2025 12th International Conference on Electrical,
Electronic and Computing Engineering (IcETRAN), 1-4, IEEE, 2025.

[295] Sveucilisni racunski centar Srce, Napredno racunanje — usluga napredno raCunanje,
https://www.srce.unizg.hr/napredno-racunanije, [Zadnji pristup: 11. rujna
2025.].

[296] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han i G. Ding, Yolov10: Real-time
end-to-end object detection, 2024.

161


https://github.com/Deci-AI/super-gradients
https://docs.ultralytics.com/models/yolo11/
https://docs.ultralytics.com/models/yolo11/
https://www.srce.unizg.hr/napredno-racunanje

LITERATURA

[297] 1. Marin, A. Kuzmanic Skelin i T. Grujic, Empirical evaluation of the effect of op-
timization and regularization techniques on the generalization performance of deep
convolutional neural network, Applied Sciences, 10, 21, 7817, 2020.

[298] C. Shorten 1 T. M. Khoshgoftaar, A survey on image data augmentation for deep lear-
ning, Journal of big data, 6, 1, 1-48, 2019.

[299] E. D. Cubuk, B. Zoph, J. Shlens i Q. V. Le, Randaugment: Practical automated data
augmentation with a reduced search space, Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 702-703, 2020.

[300] M. Raghu, C. Zhang, J. Kleinberg i S. Bengio, Transfusion: Understanding transfer
learning for medical imaging, Advances in neural information processing systems, 32,
2019.

[301] J.-J. Wang, Y.-F. Liu, X. Nie i Y. Mo, Deep convolutional neural networks for seman-
tic segmentation of cracks, Structural Control and Health Monitoring, 29, 1, €2850,
2022.

[302] M. F. Hashmi, M. Devipriyanka, B. Raghavaram i A. A. Husain, Advanced seman-
tic lung segmentation with a hybrid segnet-resnet50 network, Journal of Electrical
Systems and Information Technology, 12, 1, 64, 2025.

[303] S. Alam, N. K. Tomar, A. Thakur, D. Jhai A. Rauniyar, Automatic polyp segmentation
using u-net-resnet50, arXiv preprint arXiv:2012.15247, 2020.

[304] A. Hermans, L. Beyer i B. Leibe, In defense of the triplet loss for person re-
identification, arXiv preprint arXiv:1703.07737, 2017.

[305] Y. Sun, L. Zheng, Y. Yang, Q. Tian i S. Wang, Beyond part models: Person retrieval
with refined part pooling (and a strong convolutional baseline), Proceedings of the
European conference on computer vision (ECCV), 480-496, 2018.

[306] X. Liu, W. Liu, H. Ma i H. Fu, Large-scale vehicle re-identification in urban surve-
illance videos, 2016 IEEE international conference on multimedia and expo (ICME),
1-6, IEEE, 2016.

[307] M. Lin, Q. Cheni S. Yan, Network in network, arXiv preprint arXiv:1312.4400, 2013.

[308] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andre-
etto 1 H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision
applications, arXiv preprint arXiv:1704.04861, 2017.

[309] K. Zhou i T. Xiang, Torchreid: A library for deep learning person re-identification in
pytorch, arXiv preprint arXiv:1910.10093, 2019.

[310] Z. Yang, D. Wu, C. Wu, Z. Lin, J. Gui W. Wang, A pedestrian is worth one prompt:
Towards language guidance person re-identification, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 17343-17353, 2024.

[311] W. He, Y. Deng, S. Tang, Q. Chen, Q. Xie, Y. Wang, L. Bai, F. Zhu, R. Zhao,
W. Ouyang et al., Instruct-reid: A multi-purpose person re-identification task with
instructions, Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 17521-17531, 2024.

162



LITERATURA

[312] D. P. Kingma, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

[313] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao i S. C. Hoi, Deep learning for person
re-identification: A survey and outlook, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44, 6, 28722893, 2022.

[314] X. Zhang, Y. Wang i L. Zhao, Global-local attention with triplet loss and label smo-

othed cross-entropy for person re-identification, Multimedia Tools and Applications,
82,36743-36761, 2023.

[315] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens i Z. Wojna, Rethinking the inception
architecture for computer vision, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818-2826, 2016.

[316] X. Bai, M. Yang, T. Huang, Z. Dou, R. Yu i Y. Xu, Deep-person: Learning discri-
minative deep features for person re-identification, Pattern Recognition, 98, 107036,
2020.

[317] G. Wang, Y. Yuan, X. Chen, J. Li i X. Zhou, Learning discriminative features with
multiple granularities for person re-identification, Proceedings of the 26th ACM inter-
national conference on Multimedia, 274-282, 2018.

[318] L. Zhang, Y. Xu, L. Zhao i F. Qin, Resolution independent person re-identification
network, IET Computer Vision, 19, 1, e12140, 2025.

[319] C. Lyu, T. Xu, K. Wang i J. Chen, Person re-identification based on human semantic
parsing and message passing., Journal of Supercomputing, 79, 5, 2023.

[320] Y. Bar-Shalom, X. R. Li i T. Kirubarajan, Estimation with applications to tracking
and navigation: theory algorithms and software, John Wiley & Sons, 2001.

[321] M. Brostrom 1 contributors, Boxmot: Pluggable sota multi-object tracking modules
for segmentation, object detection and pose estimation models, https://github.

com/mikel-brostrom/boxmot, open-source software [Zadnji pristup: 10. prosinca
2025.].

[322] A. H. Jonathon Luiten, Trackeval, https://github.com/JonathonLuiten/
TrackEval, 2020. [Zadnji pristup: 10. prosinca 2025.].

[323] L. Wei, S. Zhang, W. Gao i Q. Tian, Person transfer gan to bridge domain gap for
person re-identification, 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 79-88, 2018.

163


https://github.com/mikel-brostrom/boxmot
https://github.com/mikel-brostrom/boxmot
https://github.com/JonathonLuiten/TrackEval
https://github.com/JonathonLuiten/TrackEval

LITERATURA

164



A. Struktura SSMOT detekcijskog podskupa prije i

nakon prosirenja

U ovom dodatku detaljno je prikazana struktura SSMOT detekcijskog podskupa prije i nakon
prosirenja.

Slika A.1 daje pregled broja instanci objekata po klasama te jasno pokazuje razliku u
obimu podataka prije i nakon proSirenja. Dodatno, Slika B.1 daje usporedni prikaz udjela
instanci pojedine klase u detekcijskom skupu podataka prije i nakon proSirenja. S druge
strane, Tablica A.l pruZa detaljan prikaz broja slika na kojima se pojavljuju plovila pojedi-
nih klasa te broja instanci po klasama, razdvojeno prema skupovima za treniranje i valida-
ciju, kao i sveukupno. Na taj nain omogucena je usporedba distribucije objekata te uvid u

znacajno povecanje veliCine detekcijskog podskupa nakon provedenog postupka proSirenja.

Napomena. U retku "Ukupno" Tablice A.1 u stupcima naziva "Slike“ naveden je ukupan
broj slika u pojedinom skupu podataka. Ova vrijednost ne mora odgovarati zbroju po svim

klasama, buduci da se na istoj slici moZe nalaziti vise razlicitih objekata.

Analizom nije obuhvaéen nezavisni testni skup koji se vodi odvojeno, bududi da je fiksan

i nije bio predmet proSirenja.

Broj instanci po klasama (prije i nakon prosirenja skupa)
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Slika A.1: Broj instanci objekata pojedine klase prije i nakon prosirenja podskupa za
detekciju.

165



Dodatak A. Struktura SSMOT detekcijskog podskupa prije i nakon prosirenja

Udio klasa prije prosirenja Udio klasa nakon proSirenja
(13680 instanci) (45830 instanci)

Klase Klase
Small craft mm Speed Craft Small craft mmm Speed Craft
mmm Small Fishing Boat Motorboat mmm Small Fishing Boat Motorboat
Small Passenger Ship ~ mEE Pleasure Yacht Small Passenger Ship ~ mEE Pleasure Yacht
B Fishing Trawler Ferry B Fishing Trawler Ferry
[0 Large Passenger Ship W High-speed craft 0 Large Passenger Ship W High-speed craft
Sailing Boat Sailing Boat

Slika A.2: Udio instanci objekata pojedine klase prije i nakon proSirenja podskupa za
detekciju.
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Tablica A.1: Pregled broja slika i instanci po klasama u SSMOT detekcijskom podskupu prije i nakon proSirenja.

Train Val Sveukupno
Klasa Slike Inst. Inst. (%) | Slike Inst. Inst. (%) || Slike Inst. Inst. (%)
Small craft 169 343 2.97 39 84 3.92 208 427 3.12
Small Fishing Boat 410 428 3.71 71 77 3.60 481 505 3.69
Small Passenger Ship 635 754 6.53 110 129 6.03 745 883 6.45
.% Fishing Trawler 1109 1414 12.25 209 275 12.84 || 1318 1689 12.35
© Large Passenger Ship 886 1113 9.65 154 195 9.11 || 1040 1308 9.56
’Z Sailing Boat 669 1270 11.01 124 223 10.42 793 1493 10.91
s Speed Craft 750 1027 8.90 140 192 8.97 890 1219 8.91
:% Motorboat 506 532 4.61 102 110 5.14 608 642 4.69
=W Pleasure Yacht 345 382 3.31 57 61 2.85 402 443 3.24
Ferry 2321 3901 33.81 416 712 33.26 || 2737 4613 33.72
High-speed craft 357 375 3.25 77 83 3.88 434 458 3.35
UKkupno 2661 11539 100.00 | 470 2141 100.00 | 3131 13680 100.00
Small craft 517 1417 3.63 90 199 292 607 1616 3.53
Small Fishing Boat 1023 1101 2.82 168 186 273 | 1191 1287 2.81
= Small Passenger Ship | 2755 3496 896 | 483 613 9.00 || 3238 4109 8.97
= Fishing Trawler 3751 4098 1050 | 652 714 10.48 || 4403 4812 10.50
;g Large Passenger Ship | 3360 4150 10.64 604 741 10.88 || 3964 4891 10.67
© Sailing Boat 2139 3261 8.36 390 612 8.98 || 2529 3873 8.45
:‘ Speed Craft 3203 4501 11.54 | 540 769 11.29 || 3743 5270 11.50
S Motorboat 1780 1902 4.87 320 343 5.03 || 2100 2245 4.90
;2 Pleasure Yacht 1282 1383 354 | 225 243 3.57 || 1507 1626 3.55
Ferry 7088 12351 31.66 | 1242 2133 31.31 || 8330 14484 31.60
High-speed craft 1274 1357 3.48 233 260 3.82 || 1507 1617 3.53
Ukupno 7632 39017 100.00 | 1347 6813 100.00 | 8979 45830 100.00

you 1 2(11d vdnyspod 3oys10y212p JOWSS DANIYNAS Y YDIDPO
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Dodatak A. Struktura SSMOT detekcijskog podskupa prije i nakon prosirenja
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B. Detalji 0 SSMOT videozapisima za pracenje

Ovaj dodatak nadopuna je Potpoglavlju 4.4, u kojem je predstavljen podskup SSMOT skupa
podataka namijenjen evaluaciji algoritama praéenja, koji sadrzi ukupno 18 videozapisa. Na
Slici B.1 prikazani su primjeri kadrova iz tih videozapisa, rasporedeni od SSMOT _I u gor-

njem lijevom kutu do SSMOT_18 u donjem desnom.

Slika B.1: Primjer kadrova iz SSMOT videozapisa.

U Tablici B.1 prikazan je toCan broj putanja i1 odgovarajucih grani¢nih okvira za svaku
klasu plovila u pojedinim videozapisima SSMOT skup podataka. Ovakav pregled omogucuje
bolje razumijevanje strukture samih videozapisa, odnosno raspodjele objekata po klasama i
videozapisima, ¢ime se moZe procijeniti raznolikost 1 sloZenost pojedinih scena.

Tablica B.2 daje detaljan pregled svih zabiljeZenih okluzija u videozapisima SSMOT
skupa podataka. Za svaku okluziju naveden je identifikator zaklonjenog objekta, pripadajuca
klasa plovila, pocetni i zavrSni okvir te ukupno trajanje izraZzeno u okvirima i sekundama.
Boje koristene u tablici oznacavaju kategoriju okluzije prema trajanju: kratke (zelene), sred-
nje duge (Zute) i duge (crvene) okluzije. Ove su informacije posebno su vazne za procjenu ot-
pornosti algoritama pracenja na okluzije razli¢itog trajanja. Usporedba njihovih performansi
na sekvencama s kratkim, srednje dugim i dugim okluzijama omogucuje analizu ograni¢enja
i prednosti u realnim uvjetima pracenja. Tablica pritom sluZi kao referenca za kvantitativnu i
kvalitativnu evaluaciju, jer precizno definira situacije potpunog prekida vidljivosti objekata.

169



0L

Tablica B.1: Pregled broja putanja i granicnih okvira za razlicite tipove plovila u SSMOT videozapisima.

Small Small L Large . .
Small L Fishing Sailing  Speed Pleasure High-speed
Fishing Passenger Passenger Motorboat
Craft . Trawler . Boat Craft Yacht craft
Boat Ship Ship
SSMOT 1 putanje | 1 1 2 1 s
gr. okviri | 287 287 574 287 | 1435
ssMor o Puanie | 1 1 4 1 2 9
gr. okviri | 545 604 1516 542 1208 | 4415
ssMop 3 Panie | 1 2 1 1 1 1 | 7
gr. okviri | 982 2074 882 1037 1037 1037 | 7049
SSMOT 4 Puanie | 1 1 1 2 2 1 I
gr. okviri | 370 370 370 630 740 370 | 2850
sMoT 5 Panie | 1 1 1 2 1 1 | 7
gr. okviri | 368 433 433 801 433 433 | 2901
SMOT ¢ Panie | 1 1 1 4 2 2 | n
gr. okviri | 856 856 856 2903 807 1712 | 7990
SSMOT 7 putanje ‘ 1 1 1 1 ‘ 4
gr. okviri | 451 451 451 451 | 1804
ssMoT 5 Panie | 1 1 3 3 2 1 |
gr. okviri | 345 1697 1691 2547 3394 820 | 10494
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Small Small Lo Large . .
Small L. Fishing Sailing  Speed Pleasure High-speed
Fishing Passenger Passenger Motorboat Ferry
Craft . Trawler . Boat Craft Yacht craft
Boat Ship Ship
R | 1 1 1 1 2 2 I
gr. okviri | 922 872 472 922 1607 1562 | 6357
putanje | 1 2 4 3 2 |12
SSMOT_10
gr. okviri | 836 1672 849 1542 1672 | 6571
sswmor 11 Putane |7 1 3 1 |12
gr. okviri | 1914 277 717 277 | 3185
putanje ‘ 6 1 2 1 ‘ 10
SSMOT_12
gr. okviri | 3783 733 1856 558 | 6930
SSMOT 13 putanje ‘ 1 1 2 2 1 ‘ 7
gr. okviri | 646 646 776 1277 302 | 3647
putanje | 1 2 1 1 3 1 9
SSMOT_14
gr. okviri | 598 1196 598 288 1794 598 | 5072
SSMOT 15 putanje ‘ 1 1 2 1 1 1 ‘ 7
gr. okviri | 585 585 1170 585 585 585 | 4095
putanje | 1 2 3 1 2 1 10
SSMOT_16
gr. okviri | 940 1880 2331 940 1741 910 | 8742
SSMOT._17 putanje ‘ 2 1 1 ‘ 4
gr. okviri | 1882 941 941 | 3764
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Small Small Large

Small L Fishing Sailing  Speed Pleasure High-speed
Fishing Passenger Passenger Motorboat Ferry
Craft . Trawler . Boat Craft Yacht craft
Boat Ship Ship
putanje | 1 1 1 1 2 2 I
SSMOT_18
gr. okviri | 332 538 300 538 921 1076 | 3705
putanje | 13 2 9 13 14 13 28 11 5 31 10 | 149
Ukupno
gr. okviri ‘ 5697 783 5831 9197 9767 8277 12841 6120 4126 22375 5992 ‘ 91006

L1
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Dodatak B. Detalji o SSMOT videozapisima za pracenje

Tablica B.2: Detaljan pregled okluzija u SSMOT skupu videozapisa.
Zelenom su oznacene kratke (< 2s), Zutom srednje duge (>2s i < 8s), a crvenom
duge (> 8s) okluzije plovila.

. .. Pocetni ZavrSni Trajanje Trajanje
Video D Kategorija okvir okvir (okviri) (s)
SSMOT_1 5 Speed Craft 103 199 97 3.87

4 Pleasure Yacht 421 740 320 12.79
SSMOT_3 5 Motorboat 251 810 560 22.38
SSMOT_5 6 Motorboat 64 115 52 2.08
SSMOT_6 6 Speed Craft 535 615 81 3.24
SSMOT_7 4 Small Fishing Boat 177 210 34 1.36
SSMOT_8 2 Fishing Trawler 1395 1408 14 0.56
1 High-speed Craft 652 686 35 1.40
3 Small Passenger Ship 181 455 275 10.99
4 Speed Craft 213 507 295 11.79
SSMOT_? 4 Speed Craft 911 920 10 0.40
6 Fishing Trawler 574 610 37 1.48
6 Fishing Trawler 647 660 14 0.56
4 Small Craft 553 583 31 1.24
SSMOT_12 8 Small Craft 74 84 11 0.44
1 Ferry 369 535 167 16.67
3 Small Passenger Ship 416 457 42 4.19
SSMOT_13 4 Motorboat 75 147 73 7.29
4 Motorboat 308 364 57 5.69
4 Motorboat 478 618 141 14.08
7  Large Passenger Ship 36 307 272 27.15
SSMOT_14 8 Speed Craft 80 181 102 10.18
9 Sailing Boat 207 497 2901 29.05
SSMOT_15 6 Motorboat 131 415 285 11.38
2 Fishing Trawler 137 161 25 1.00
2 Fishing Trawler 766 775 10 0.40
SSMOT_16 6 Motorboat 221 230 10 0.40
6 Motorboat 545 717 173 6.91
2 Small Passenger Ship 441 478 38 1.27
SSMOT_17 4 Speed Craft 351 555 205 6.83
SSMOT_18 8 Speed Craft 209 218 10 0.40

173



Dodatak B. Detalji o SSMOT videozapisima za pracenje

174



C. Detaljni rezultati evaluacije YOLO11n/m/s detektora

prije i nakon prosirenja detekcijskog podskupa

U ovom dodatku prikazani su detaljni rezultati evaluacije YOLO1 1n/m/s detektora na skupu
za testiranje. Tablica C.1 sadrZi pregled performansi modela po pojedinacnim klasama i
ukupno, kako prije tako i nakon treniranja na proSirenom SSMOT skupu podataka za detek-
ciju. Uz to, data je i usporedna analiza u vidu preciznost—odziv krivulja na Slici C.1, ¢ime
se dodatno ilustrira utjecaj prosirenja skupa podataka i koriStene arhitekture na konacne per-

formanse modela.
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Tablica C.1: Detaljan pregled rezultata evaluacije YOLO1 In/s/m detektora (po klasama i ukupno) prije i nakon treniranja na prosirenom SSMOT
skupu podataka za detekciju.
YOLO11n YOLOL11s YOLO11m
Klasa P R mAP50 mAP50;95 P R mAP50 mAP50;95 P R mAPS() mAP50:95
Small craft 0.968 0.784 0.888 0.670 | 0.969 0.810 0.901 0.747 ] 0958 0.840 00916 0.781
Small Fishing Boat 0.459 0.200 0.357 0.297 | 0.588 0.235 0.425 0.372 | 0.654 0.200 0.442 0.416
Small Passenger Ship | 0.909 0.701 0.817 0.706 | 0.919 0.754 0.835 0.753 | 0918 0.777 0.863 0.783
% Fishing Trawler 0.991 0.942 0.971 0.721 | 0.984 0.958 0.977 0.722 10993 0954 00977 0.777
& | Large Passenger Ship | 0.990 0.972 0.985 0.935 | 0.997 0975 0.987 0.950 | 0.997 0.997 0.988 0.960
2 | Sailing Boat 0.886 0.838 0.899 0.815 | 0.931 0.850 0.911 0.851 0.951 0.877 0.931 0.883
2 Speed Craft 0.777 0.677 0.720 0.559 | 0.795 0.758 0.768 0.621 | 0.802 0.792 0.801 0.680
:% Motorboat 0.537 0.348 0.401 0.306 | 0.569 0.452 0451 0.369 | 0.689 0.486 0.568 0.493
&« | Pleasure Yacht 0.824 0.682 0.800 0.677 | 0914 0.636 0.796 0.706 | 0.832 0.755 0.847 0.746
Ferry 0.975 0.966 0.980 0.859 | 0985 0.955 0.975 0.866 | 0.986 0.970 0.983 0.901
High-speed craft 0.856 0.922 0.937 0.717 | 0.906 0.961 0.967 0.824 | 0961 0.956 0.975 0.854
Zajedno 0.834 0.730 0.796 0.660 | 0.869 0.759 0.818 0.707 | 0.885 0.780 0.844 0.752
Small craft 0.974 0.848 0.921 0.747 | 0979 0.874 0.935 0.768 | 0983 0.877 0.937 0.801
Small Fishing Boat 0.767 0.388 0.599 0.485 | 0.692 0.424 0.600 0.530 | 0.688 0.518 0.640 0.573
= Small Passenger Ship | 0.910 0.874 0917 0.798 | 0.907 0910 0.937 0.830 | 0961 0.904 0.946 0.860
‘= | Fishing Trawler 0.982 0.951 0.975 0.816 | 0.983 0.959 0.979 0.845 | 0986 0973 0.985 0.877
;g Large Passenger Ship | 0.995 0.993  0.995 0.975 | 0.998 0.993 0.994 0.974 ] 0998 0.992 0.992 0.977
© | Sailing Boat 0.958 0.895 0.943 0.866 | 0.974 0.916 0.955 0.903 | 0969 00931 0.964 0.917
:“ Speed Craft 0.835 0.801 0.845 0.680 | 0.861 0.850 0.883 0.740 | 0901 0.869 0.904 0.786
S | Motorboat 0.748 0.467 0.606 0.500 | 0.780 0.557 0.668 0.580 | 0.842 0.633 0.745 0.647
E Pleasure Yacht 0.878 0.762 0.852 0.743 | 0.928 0.768 0.871 0.798 | 0904 0.815 0.893 0.829
Ferry 0.985 0.983 0.990 0.928 | 0.984 0.983 0.989 0.932 10983 0.990 0.994 0.949
High-speed craft 0.956 0.967 0.980 0.866 | 0.978 0.972 0.985 0.888 | 0951 0.978 0.988 0.907
Zajedno 0.908 0.812 0.875 0.764 | 0915 0.837 0.891 0.799 | 0.924 0.862 0.908 0.829
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Dodatak C. Detaljni rezultati evaluacije YOLO11In/m/s detektora prije i nakon prosirenja
detekcijskog podskupa

Prije prosSirenja

Precision-Recall Curve

Nakon prosirenja

Precision-Recall Curve

1.0 1.0
Small Craft 0.888 Small Craft 0.921
Small Fishing Boat 0.357 Small Fishing Boat 0.599
Small Passenger Ship 0.817 Small Passenger Ship 0.917
Fishing Trawler 0.971 Fishing Trawler 0.975
0.8 Large Passenger Ship 0.985 0.8 Large Passenger Ship 0.995
Sailing Boat 0.899 Sailing Boat 0.943
Speed Craft 0.720 Speed Craft 0.845
Motorboat 0.401 Motorboat 0.606
c 06 Pleasure Yacht 0.800 06 Pleasure Yacht 0.852
Ferry 0.980 Ferry 0.990
= = <
— o High-speed craft 0.937 :g High-speed craft 0.980
9 g all classes 0.796 MAP@0.5 g all classes 0.875 MAP@0.5
& £
g 0.4 0.4
0.2 0.2
0.0 0.0
o. 0.0 0.2 0.4 06 0.8 1.0
Recall Recall
10 Precision-Recall Curve 10 Precision-Recall Curve
T Small Craft 0.901 ’ Small Craft 0.935
‘ Small Fishing Boat 0.425 Small Fishing Boat 0.600
‘ Small Passenger Ship 0.835 Small Passenger Ship 0.937
Fishing Trawler 0.977 Fishing Trawler 0.979
08 Large Passenger Ship 0.987 0.8 Large Passenger Ship 0.994
‘ Sailing Boat 0.911 Sailing Boat 0.955
Speed Craft 0.768 Speed Craft 0.883
‘ Motorboat 0.451 Motorboat 0.668
» 06 ‘ Pleasure Yacht 0.796 06 Pleasure Yacht 0.871
Ferry 0.975 Ferry 0.989
- < <
8 2 ‘ High-speed craft 0.967 ] High-speed craft 0.985
9 all classes 0.818 MAP@0.5 g all classes 0.891 MAP@0.5
& &
g 0.4 04
02 0.2
0.0 0.0
0.0 0.2 0.4 06 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
10 Precision-Recall Curve 10 Precision-Recall Curve
I Small Craft 0.916 ’ > Small Craft 0.937
Small Fishing Boat 0.442 Small Fishing Boat 0.640
Small Passenger Ship 0.863 Small Passenger Ship 0.946
Fishing Trawler 0.977 Fishing Trawler 0.985
08 Large Passenger Ship 0.988 0.8 Large Passenger Ship 0.994
Sailing Boat 0.931 ™ Sailing Boat 0.964
Speed Craft 0.801 Speed Craft 0.904
Motorboat 0.568 Motorboat 0.745
g o6 Pleasure Yacht 0.847 06 Pleasure Yacht 0.893
. Ferry 0.983 - Ferry 0.994
- g High-speed craft 0.975 g High-speed craft 0.988
8 2 all classes 0.844 MAP@0.5 g all classes 0.908 MAP@0.5
£ &
O o4 04
9 .
02 0.2
0.0 - 0.0 J
0.0 0.2 0.4 06 08 10 0.0 0.2 0.4 0.6 08 1.0
Recall Recall

Slika C.1: Uporedan prikaz preciznost—odziv krivulja YOLO1 In/m/s detektora treniranih
na pocetnom i prosirenom SSMOT detekcijskom skupu podataka.
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D. Vizualizacije dodatnih TOP-6 rezultata RelID modela

U ovom dodatku prikazani su dodatni primjeri upita i pripadaju¢ih TOP-6 rangiranih re-
zultata iz proSirene galerije, dobivenih primjenom razli¢itih ReID modela. Primjeri sluze
kao dopuna glavnim rezultatima u radu te omogucuju detaljniji uvid u ponasanje modela u

zahtjevnijim scenarijima pretrage.

TOP-6 rezultata

OSNet 1.0
(euklidska slicnost)

UPIT = 15 .| OSNet 1.0
= 4 (kosinusna sli¢nost)

5 OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

(kosinusna sli¢nost)

Le-i ResNet50
s (kosinusna sli¢nost)

a‘ (euklidska sliénost)

OSNet 1.0
(kosinusna slicnost)

OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

ResNet50
(kosinusna slicnost)

W‘ OSNet 1.0

(euklidska sli¢nost)

SRS OSNet 1.0
(kosinusna sli¢nost)

M OSNet 1.0 - ImageNet
ol (kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

ResNet50
(kosinusna slicnost)

Slika D.1: Primjeri upita i pripadajucih TOP-6 rezultata iz proSirene galerije, dobivenih
razlicitim RelD modelima (1).
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TOP-6 rezultata

OSNet 1.0
(euklidska sli¢nost)

OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
ad (kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

- osinian
(kosinusna sli¢nost)

OSNet 1.0
(euklidska sli¢nost)

OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

ResNet50
(kosinusna slicnost)

OSNet 1.0
. (euklidska sli¢nost)

OSNet 1.0
(kosinusna slicnost)

UPIT

OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

(kosinusna sli¢nost)

ResNet50
(kosinusna sli¢nost)

| OSNet 1.0
" (euklidska slicnost)

= OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
(kosinusna slicnost)

OSNet 0.75
(kosinusna sli¢nost)

ResNet50
g (kosinusna sli¢nost)
OSNet 1.0

(euklidska sli¢nost)

OSNet 1.0
(kosinusna sli¢nost)

OSNet 1.0 - ImageNet
(kosinusna slicnost)

- ==t OSNet 0.75
| S— (kosinusna sli¢nost)

ResNet50
(kosinusna sli¢nost)

Slika D.2: Primjer upita i pripadajucih TOP-6 rezultata iz prosirene galerije, dobivenih
razli¢itim RelD modelima (2).
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TOP-6 rezultata

OSNet 1.0
(euklidska slicnost)

OSNet 1.0 - ImageNet
(kosinusna sli¢nost)

OSNet 0.75
(kosinusna sli¢nost)

ResNet50
(kosinusna sli¢nost)

Slika D.3: Primjer upita i pripadajucih TOP-6 rezultata iz prosirene galerije, dobivenih
razlic¢itim RelD modelima (3).
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